Digital Surgery LTD, 230 City Road, London, EC1V 2QY, UK.
Digital Surgery LTD, 230 City Road, London, EC1V 2QY, UK.
Med Image Anal. 2021 Jul;71:102053. doi: 10.1016/j.media.2021.102053. Epub 2021 Mar 31.
Video feedback provides a wealth of information about surgical procedures and is the main sensory cue for surgeons. Scene understanding is crucial to computer assisted interventions (CAI) and to post-operative analysis of the surgical procedure. A fundamental building block of such capabilities is the identification and localization of surgical instruments and anatomical structures through semantic segmentation. Deep learning has advanced semantic segmentation techniques in the recent years but is inherently reliant on the availability of labelled datasets for model training. This paper introduces a dataset for semantic segmentation of cataract surgery videos complementing the publicly available CATARACTS challenge dataset. In addition, we benchmark the performance of several state-of-the-art deep learning models for semantic segmentation on the presented dataset. The dataset is publicly available at https://cataracts-semantic-segmentation2020.grand-challenge.org/.
视频反馈提供了大量有关手术过程的信息,是外科医生的主要感官提示。场景理解对于计算机辅助干预 (CAI) 和手术过程的术后分析至关重要。这种能力的基本构建块是通过语义分割识别和定位手术器械和解剖结构。深度学习在近年来推进了语义分割技术,但本质上依赖于可用的标记数据集进行模型训练。本文介绍了一个用于白内障手术视频语义分割的数据集,补充了公开的 CATARACTS 挑战赛数据集。此外,我们还在呈现的数据集上对几种最先进的深度学习模型的语义分割性能进行了基准测试。该数据集可在 https://cataracts-semantic-segmentation2020.grand-challenge.org/ 上获取。