Suppr超能文献

代偿储备预测失血性休克的特征重要性分析。

Feature Importance Analysis for Compensatory Reserve to Predict Hemorrhagic Shock.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:1747-1752. doi: 10.1109/EMBC48229.2022.9871661.

Abstract

Hemorrhage is the leading cause of preventable death from trauma. Traditionally, vital signs have been used to detect blood loss and possible hemorrhagic shock. However, vital signs are not sensitive for early detection because of physiological mechanisms that compensate for blood loss. As an alternative, machine learning algorithms that operate on an arterial blood pressure (ABP) waveform acquired via photoplethysmography have been shown to provide an effective early indicator. However, these machine learning approaches lack physiological interpretability. In this paper, we evaluate the importance of nine ABP-derived features that provide physiological insight, using a database of 40 human subjects from a lower-body negative pressure model of progressive central hypovolemia. One feature was found to be considerably more important than any other. That feature, the half-rise to dicrotic notch (HRDN), measures an approximate time delay between the ABP ejected and reflected wave components. This delay is an indication of compensatory mechanisms such as reduced arterial compliance and vasoconstriction. For a scale of 0% to 100%, with 100% representing normovolemia and 0% representing decompensation, linear regression of the HRDN feature results in root-mean-squared error of 16.9%, R2 of 0.72, and an area under the receiver operating curve for detecting decompensation of 0.88. These results are comparable to previously reported results from the more complex black box machine learning models. Clinical Relevance- A single physiologically interpretable feature measured from an arterial blood pressure waveform is shown to be effective in monitoring for blood loss and impending hemorrhagic shock based on data from a human lower-body negative pressure model of progressive central hypolemia.

摘要

出血是创伤导致可预防死亡的主要原因。传统上,生命体征被用于检测失血和可能的失血性休克。然而,由于生理机制补偿了失血,生命体征对早期检测并不敏感。作为替代方案,基于光电容积脉搏波获取的动脉血压 (ABP) 波形的机器学习算法已被证明可提供有效的早期指标。然而,这些机器学习方法缺乏生理可解释性。在本文中,我们使用来自下半身负压模型渐进性中心低血容量的 40 名人类受试者数据库,评估了九个提供生理见解的 ABP 衍生特征的重要性。发现一个特征比任何其他特征都重要得多。该特征,半升到达二峰切迹 (HRDN),测量 ABP 射出波和反射波分量之间的近似时间延迟。这种延迟是动脉顺应性降低和血管收缩等代偿机制的指示。在 0%到 100%的范围内,100%表示正常血容量,0%表示失代偿,HRDN 特征的线性回归导致均方根误差为 16.9%,R2 为 0.72,检测失代偿的接收器操作曲线下面积为 0.88。这些结果与之前从更复杂的黑盒机器学习模型报告的结果相当。临床意义- 从动脉血压波形测量的单个生理可解释特征已被证明在基于渐进性中心低血容量人类下半身负压模型的数据监测失血和即将发生的失血性休克方面是有效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验