Suppr超能文献

基于量子模式识别技术和轻量级卷积神经网络模块的光电容积脉搏波信号质量评估

Signal Quality Assessment of Photoplethysmogram Signals using Quantum Pattern Recognition Technique and lightweight CNN Module.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:3382-3386. doi: 10.1109/EMBC48229.2022.9871494.

Abstract

Photoplethysmography (PPG) signal comprises physiological information related to cardiorespiratory health. High-quality PPG signals are necessary to extract cardiores-piratory information accurately. Motion artifacts can easily corrupt PPG signals due to human locomotion, leading to noise enriched, poor quality signals. Several rule-based and Machine-Learning (ML) - based approaches for PPG signal quality estimation are available, but those algorithms' efficacy is questionable. So, the authors propose a lightweight CNN architecture for signal quality assessment by employing a novel Quantum Pattern Recognition (QPR) technique. The proposed algorithm is validated on manually annotated data obtained from the University of Queensland database. A total of 28366, 5s signal segments are preprocessed and transformed into image files of 20 x 500 pixels for input to the 2D CNN architecture. The developed model classifies the PPG signal as 'good' and 'bad' with an accuracy of 98.3% with 99.3% sensitivity, 94.5% specificity and 98.9% F1-score. The experimental analysis concludes that slim module based architecture and novel Spatio-temporal pattern recognition technique improve the system's performance. The proposed approach is suitable for a resource-constrained wearable implementation.

摘要

光电容积脉搏波(PPG)信号包含与心肺健康相关的生理信息。为了准确提取心肺信息,需要高质量的 PPG 信号。由于人体运动,运动伪影很容易使 PPG 信号失真,导致信号噪声丰富,质量较差。现已有一些基于规则和基于机器学习(ML)的 PPG 信号质量估计方法,但这些算法的效果值得怀疑。因此,作者提出了一种轻量级的卷积神经网络(CNN)架构,通过采用新颖的量子模式识别(QPR)技术来评估信号质量。该算法在昆士兰大学数据库中获得的手动标注数据上进行了验证。共预处理了 28366 个 5s 的信号段,并将其转换为 20x500 像素的图像文件,输入到 2D CNN 架构中。开发的模型将 PPG 信号分类为“良好”和“不良”,准确率为 98.3%,灵敏度为 99.3%,特异性为 94.5%,F1 得分为 98.9%。实验分析得出结论,基于 slim 模块的架构和新颖的时空模式识别技术提高了系统的性能。该方法适用于资源受限的可穿戴设备实现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验