Suppr超能文献

基于 CNN、SVM 和超分辨率声谱图统一的新型 CS-NET 架构,用于使用光电容积脉搏波监测和分类血压。

A novel CS-NET architecture based on the unification of CNN, SVM and super-resolution spectrogram to monitor and classify blood pressure using photoplethysmography.

机构信息

Department of Electronics and Communication Engineering, Bennett University, Greater Noida, India.

School of Electronics Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, India.

出版信息

Comput Methods Programs Biomed. 2023 Oct;240:107716. doi: 10.1016/j.cmpb.2023.107716. Epub 2023 Jul 16.

Abstract

CONTEXT

Continuous blood pressure (BP) monitoring plays an important role while treating various cardiovascular diseases and hypertension. A high correlation between arterial blood pressure (ABP) and Photoplethysmogram (PPG) signal enables using a PPG signal to monitor and classify BP continuously. Control of BP in realtime is the basis for the prevention of hypertension.

PROPOSED APPROACH

This work proposes a CS-NET architecture by unifying CNN and SVM approaches to classify BP using PPG signals. The main objective of the CS-NET method is to establish an accurate and reliable algorithm for the ABP classification.

METHODOLOGY

ABP signals are labeled normal and abnormal using the hypertension criteria the American College of Cardiology (ACC)/American Heart Association (AHA) laid down. The proposed CS-NET model incorporates three critical steps in three successive stages. The first stage includes converting a preprocessed PPG signal into a time-frequency (TF) representation called a super-resolution spectrogram by superlet transform. The second stage uses a convolutional neural network (CNN) model with several hidden layers to extract morphological features from every PPG super-resolution spectrogram. The third stage uses a support vector machine (SVM) classifier to classify the PPG signal.

RESULTS

PPG signals are used to train and test the proposed model. The performance of the proposed CS-NET method is tested using MIMIC-II, MIMIC-III, and PPG-BP-figshare database in terms of accuracy and F1 score. Moreover, the CS-NET method achieves better results with high accuracy when compared with other benchmark approaches that require an electrocardiogram signal for reference.

CONCLUSIONS

The proposed model achieved an aggregate classification accuracy of 98.21% across a five-fold cross-validation technique, making it a reliable approach for BP classification in clinical settings and realtime monitoring.

摘要

背景

在治疗各种心血管疾病和高血压时,连续血压(BP)监测起着重要作用。动脉血压(ABP)与光体积描记图(PPG)信号之间的高度相关性使得可以使用 PPG 信号来连续监测和分类 BP。实时控制 BP 是预防高血压的基础。

方法

本工作通过统一 CNN 和 SVM 方法,提出了一种使用 PPG 信号来分类 BP 的 CS-NET 架构。CS-NET 方法的主要目标是建立一种用于 ABP 分类的准确可靠的算法。

ABP 信号使用美国心脏病学会(ACC)/美国心脏协会(AHA)制定的高血压标准标记为正常和异常。所提出的 CS-NET 模型在三个连续阶段中的三个关键步骤中进行整合。第一阶段包括通过超子波变换将预处理后的 PPG 信号转换为称为超分辨率频谱图的时频(TF)表示。第二阶段使用具有几个隐藏层的卷积神经网络(CNN)模型从每个 PPG 超分辨率频谱图中提取形态特征。第三阶段使用支持向量机(SVM)分类器对 PPG 信号进行分类。

结果

使用 PPG 信号对提出的模型进行训练和测试。在所提出的 CS-NET 方法的性能测试中,使用 MIMIC-II、MIMIC-III 和 PPG-BP-figshare 数据库,从准确性和 F1 分数方面进行评估。此外,与需要心电图信号作为参考的其他基准方法相比,所提出的 CS-NET 方法具有更高的准确性,能够获得更好的结果。

结论

该模型在五重交叉验证技术中实现了 98.21%的综合分类准确率,使其成为临床环境和实时监测中 BP 分类的可靠方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验