Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:3805-3808. doi: 10.1109/EMBC48229.2022.9871639.
Overall survival (OS) time is one of the most important evaluation indices for gliomas situations. Multi-modal Magnetic Resonance Imaging (MRI) scans play an important role in the study of glioma prognosis OS time. Several deep learning-based methods are proposed for the OS time prediction on multi-modal MRI problems. However, these methods usually fuse multi-modal information at the beginning or at the end of the deep learning networks and lack the fusion of features from different scales. In addition, the fusion at the end of networks always adapts global with global (eg. fully connected after concatenation of global average pooling output) or local with local (eg. bilinear pooling), which loses the information of local with global. In this paper, we propose a novel method for multi-modal OS time prediction of brain tumor patients, which contains an improved non-local features fusion module introduced on different scales. Our method obtains a relative 8.76% improvement over the current state-of-art method (0.6989 vs. 0.6426 on accuracy). An extra testing demonstrates that our method could adapt to the situations with missing modalities. The code is available at https://github.com/TangWen920812/mmmna-net.
总生存期(OS)时间是评估脑胶质瘤患者情况的最重要指标之一。多模态磁共振成像(MRI)扫描在研究脑胶质瘤预后 OS 时间方面发挥着重要作用。已经提出了几种基于深度学习的方法来预测多模态 MRI 问题的 OS 时间。然而,这些方法通常在深度学习网络的开始或结束处融合多模态信息,缺乏来自不同尺度的特征融合。此外,网络末端的融合通常是全局与全局(例如,在全局平均池化输出的串联后进行全连接)或局部与局部(例如,双线性池化)进行融合,这会丢失全局与局部的信息。在本文中,我们提出了一种用于脑肿瘤患者多模态 OS 时间预测的新方法,该方法包含在不同尺度上引入的改进的非局部特征融合模块。与当前最先进的方法(准确性为 0.6989 对 0.6426)相比,我们的方法相对提高了 8.76%。额外的测试表明,我们的方法可以适应模态缺失的情况。代码可在 https://github.com/TangWen920812/mmmna-net 上获得。