Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:2084-2087. doi: 10.1109/EMBC48229.2022.9871135.
The number of studies in the medical field that uses machine learning and deep learning techniques has been increasing in the last years. However, these techniques require a huge amount of data that can be difficult and expensive to obtain. This specially happens with cardiac magnetic resonance (MR) images. One solution to the problem is raise the dataset size by generating synthetic data. Convolutional Variational Autoencoder (CVAe) is a deep learning technique which allows to generate synthetic images, but sometimes the synthetic images can be slightly blurred. We propose the combination of the CVAe technique combined with Style Transfer technique to generate synthetic realistic cardiac MR images. Clinical Relevance-The current work presents a tool to increase in a simple easy and fast way the cardiac magnetic resonance images dataset with which perform machine learning and deep learning studies.
近年来,医学领域中使用机器学习和深度学习技术的研究数量一直在增加。然而,这些技术需要大量的数据,这可能是困难和昂贵的。这在心脏磁共振(MR)图像中尤其如此。解决这个问题的一个方法是通过生成合成数据来增加数据集的大小。卷积变分自动编码器(CVAe)是一种深度学习技术,允许生成合成图像,但有时合成图像可能会有点模糊。我们提出将 CVAe 技术与风格转换技术相结合,生成逼真的合成心脏 MR 图像。临床相关性——目前的工作提供了一种工具,可以简单、轻松、快速地增加心脏磁共振图像数据集,从而进行机器学习和深度学习研究。