Suppr超能文献

基于 Wi-Fi 的细微运动检测在帕金森病手部震颤中的应用。

Subtle Motion Detection Using Wi-Fi for Hand Rest Tremor in Parkinson's Disease.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:1774-1777. doi: 10.1109/EMBC48229.2022.9871540.

Abstract

Parkinson's disease (PD) affects 1% of the population over the age of 60, and its prevalence increases with age. The disease progresses over time, and the condition can vary significantly in a day, which makes it difficult for precise diagnosis and medication based on short clinical sessions. Therefore, home health monitoring can play an important role in improving the healthcare of the PD patients. In this study, we proposed a method to detect, classify, and quantify daily movements and motor symptoms of PD by using the wireless sensing technology. With the presence of human movements in a space with the Wi-Fi coverage, the channel state information (CSI) of the wireless signal was transformed into images. The images were used to train a deep learning model to distinguish between different daily movements and simulated tremor. The results showed that our method obtained 99.59% and 100% accuracy of recognizing the tremor with modified VGG19 and modified Resnet152, respectively. In addition, the tremor movement was then successfully segmented out and quantified for the frequency and duration.

摘要

帕金森病(PD)影响 60 岁以上人群的 1%,其患病率随年龄增长而增加。该疾病随着时间的推移而发展,并且在一天内病情可能会有很大差异,这使得基于短期临床会议进行精确诊断和用药变得困难。因此,家庭健康监测可以在改善 PD 患者的医疗保健方面发挥重要作用。在这项研究中,我们提出了一种使用无线传感技术检测、分类和量化 PD 日常运动和运动症状的方法。当 Wi-Fi 覆盖范围内有人体运动时,无线信号的信道状态信息(CSI)被转换为图像。这些图像被用于训练深度学习模型,以区分不同的日常运动和模拟震颤。结果表明,我们的方法使用修改后的 VGG19 和修改后的 Resnet152 分别实现了对震颤的 99.59%和 100%的识别准确率。此外,成功地对震颤运动进行了分割和量化,包括频率和持续时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验