Sun Minglong, Jung Woosub, Koltermann Kenneth, Zhou Gang, Watson Amanda, Blackwell Ginamari, Helm Noah, Cloud Leslie, Pretzer-Aboff Ingrid
Computer Science Department, William & Mary, Williamsburg, United States.
The PRECISE Center, University of Pennsylvania, Philadelphia, United States.
IEEE Int Conf Connect Health Appl Syst Eng Technol. 2023 Jun;2023:1-10. Epub 2023 Jul 21.
People with Parkinson's Disease (PD) have multiple symptoms, such as freezing of gait (FoG), hand tremors, speech difficulties, and balance issues, in different stages of the disease. Among these symptoms, hand tremors are present across all stages of the disease. PD hand tremors have critical consequences and negatively impact the quality of PD patients' everyday lives. Researchers have proposed a variety of wearable devices to mitigate PD tremors. However, these devices require accurate tremor detection technology to work effectively while the tremor occurs. This paper introduces a PD action tremor detection method to recognize PD tremors from regular activities. We used a dataset from 30 PD patients wearing accelerometers and gyroscope sensors on their wrists. We selected time-domain and frequency-domain hand-crafted features. Also, we compared our hand-crafted features with existing CNN data-driven features, and our features have more specific boundaries in 2-D feature visualization using the t-SNE tool. We fed our features into multiple supervised machine learning models, including Logistic Regression (LR), K-Nearest Neighbours (KNNs), Support Vector Machines (SVMs), and Convolutional Neural Networks (CNNs), for detecting PD action tremors. These models were evaluated with 30 PD patients' data. The performance of all models using our features has more than 90% of F1 scores in five-fold cross-validations and 88% F1 scores in the leave-one-out evaluation. Specifically, Support Vector Machines (SVMs) perform the best in five-fold cross-validation with over 92% F1 scores. SVMs also show the best performance in the leave-one-out evaluation with over 90% F1 scores.
帕金森病(PD)患者在疾病的不同阶段会出现多种症状,如步态冻结(FoG)、手部震颤、言语困难和平衡问题。在这些症状中,手部震颤在疾病的各个阶段都会出现。PD手部震颤会产生严重后果,并对PD患者的日常生活质量产生负面影响。研究人员提出了各种可穿戴设备来减轻PD震颤。然而,这些设备需要准确的震颤检测技术才能在震颤发生时有效工作。本文介绍了一种PD动作震颤检测方法,用于从日常活动中识别PD震颤。我们使用了来自30名PD患者的数据集,这些患者在手腕上佩戴了加速度计和陀螺仪传感器。我们选择了时域和频域的手工特征。此外,我们将我们的手工特征与现有的CNN数据驱动特征进行了比较,在使用t-SNE工具的二维特征可视化中,我们的特征具有更明确的边界。我们将我们的特征输入到多个监督机器学习模型中,包括逻辑回归(LR)、k近邻(KNN)、支持向量机(SVM)和卷积神经网络(CNN),以检测PD动作震颤。这些模型使用30名PD患者的数据进行了评估。在五折交叉验证中,使用我们特征的所有模型的F1分数均超过90%,在留一法评估中的F1分数为88%。具体而言,支持向量机(SVM)在五折交叉验证中表现最佳,F1分数超过92%。SVM在留一法评估中也表现出最佳性能,F1分数超过90%。