Suppr超能文献

3DKnITS:用于活动识别和生物力学监测的智能纺织传感器的三维数字编织。

3DKnITS: Three-dimensional Digital Knitting of Intelligent Textile Sensor for Activity Recognition and Biomechanical Monitoring.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:2403-2409. doi: 10.1109/EMBC48229.2022.9871651.

Abstract

We present an approach to develop seamless and scalable piezo-resistive matrix-based intelligent textile using digital flat-bed and circular knitting machines. By combining and customizing functional and common yarns, we can design the aesthetics and architecture and engineer both the electrical and mechanical properties of a sensing textile. By incorporating a melting fiber, we propose a method to shape and personalize three-dimensional piezo-resistive fabric structure that can conform to the human body through thermoforming principles. It results in a robust textile structure and intimate interfacing, suppressing sensor drifts and maximizing accuracy while ensuring comfortability. This paper describes our textile design, fabrication approach, wireless hardware system, deep-learning enabled recognition methods, experimental results, and application scenarios. The digital knitting approach enables the fabrication of 2D to 3D pressure-sensitive textile interiors and wearables, including a 45 x 45 cm intelligent mat with 256 pressure-sensing pixels, and a circularly-knitted, form-fitted shoe with 96 sensing pixels across its 3D surface both with linear piezo-resistive sensitivity of 39.4 for up to 500 N load. Our personalized convolutional neural network models are able to classify 7 basic activities and exercises and 7 yoga poses in-real time with 99.6% and 98.7% accuracy respectively. Further, we demonstrate our technology for a variety of applications ranging from rehabilitation and sport science, to wearables and gaming interfaces.

摘要

我们提出了一种使用数字平板和圆形针织机开发无缝和可扩展的压阻矩阵智能纺织品的方法。通过组合和定制功能和通用纱线,我们可以设计出传感纺织品的美学和结构,并设计其电气和机械性能。通过加入熔融纤维,我们提出了一种方法来通过热成型原理来塑造和个性化三维压阻织物结构,使其能够贴合人体。这导致了一种坚固的纺织结构和紧密的接口,抑制了传感器漂移并最大限度地提高了准确性,同时确保了舒适性。本文描述了我们的纺织品设计、制造方法、无线硬件系统、基于深度学习的识别方法、实验结果和应用场景。数字针织方法能够制造 2D 到 3D 的压力敏感纺织品内部结构和可穿戴设备,包括一个 45 x 45 cm 的智能垫,具有 256 个压力感应像素,以及一个圆形针织、贴合脚部的鞋子,其 3D 表面有 96 个感应像素,线性压阻灵敏度高达 39.4,最大负载为 500 N。我们的个性化卷积神经网络模型能够实时以 99.6%和 98.7%的准确率分别对 7 种基本活动和锻炼以及 7 种瑜伽姿势进行分类。此外,我们还展示了我们的技术在各种应用中的应用,包括康复和运动科学、可穿戴设备和游戏界面。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验