Suppr超能文献

使用深度残差神经网络对自动 12 导联心电图进行分类的有效数据增强、滤波器和自动化技术。

Effective Data Augmentation, Filters, and Automation Techniques for Automatic 12-Lead ECG Classification Using Deep Residual Neural Networks.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:1283-1287. doi: 10.1109/EMBC48229.2022.9871654.

Abstract

Automatic electrocardiogram (ECG) analysis plays a critical role in early detection and diagnosis of cardiac abnormalities and diseases. Data augmentation and automation strategies have been proposed to enhance the robustness of the machine and deep learning model for the classification of cardiac abnormalities. Here we propose 15 data augmentation and 6 filters, and an automation method using an end-to-end deep residual neural network (ResNet) model for automatic cardiac abnormalities detection from 12-lead ECG recordings. We evaluate the effectiveness of data augmentation/filtering and automation techniques using the proposed ResNet-based model on the China Physiological Signal Challenge (CPSC) dataset consisting of 9 diagnostic classes. The average F1 scores across 9 classes on the CPSC dataset trained with three data augmentation (baseline wander addition, dropout, and scaling) and a filter (sigmoid compression) were significantly higher than that without using augmentation/filters (baseline). The highest average F1 score with sigmoid compression method was significantly higher (relative improvement of 2.04 %) than the baseline while horizontal and vertical flipping augmentations were detrimental to the classification performance. Additionally, the results show that the random combination of four selected data augmentation and filter using the modified RandAugment technique provided a significantly higher average F1 score (relative improvement of 2.54 %) compared to the baseline. The proposed data augmentation, filters, and automation techniques provide an effective solution to improve the classification performance of the end-to-end deep learning model from ECG recordings without changing the model hyperparameters and structure.

摘要

自动心电图(ECG)分析在心脏异常和疾病的早期检测和诊断中起着关键作用。已经提出了数据增强和自动化策略,以增强机器和深度学习模型对心脏异常分类的鲁棒性。在这里,我们提出了 15 种数据增强和 6 种滤波器,以及一种使用端到端深度残差神经网络(ResNet)模型的自动化方法,用于从 12 导联 ECG 记录中自动检测心脏异常。我们使用基于 ResNet 的模型在由 9 个诊断类别组成的中国生理信号挑战赛(CPSC)数据集上评估数据增强/滤波和自动化技术的有效性。在 CPSC 数据集上训练的三种数据增强(基线漂移添加、随机失活和缩放)和一种滤波器(sigmoid 压缩)的平均 F1 分数明显高于未使用增强/滤波器的基线(baseline)。使用 sigmoid 压缩方法的最高平均 F1 分数明显高于基线(相对提高 2.04%),而水平和垂直翻转增强对分类性能不利。此外,结果表明,使用修改后的 RandAugment 技术对四个选定的数据增强和滤波器的随机组合提供了明显更高的平均 F1 分数(相对提高 2.54%),优于基线。所提出的数据增强、滤波器和自动化技术为提高从 ECG 记录的端到端深度学习模型的分类性能提供了有效的解决方案,而无需更改模型超参数和结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验