School of Information Technology, Deakin University, Melbourne, Victoria, Australia.
Comput Methods Programs Biomed. 2024 Aug;253:108249. doi: 10.1016/j.cmpb.2024.108249. Epub 2024 May 24.
Automatic electrocardiogram (ECG) signal analysis for heart disease detection has gained significant attention due to busy lifestyles. However, ECG signals are susceptible to noise, which adversely affects the performance of ECG signal analysers. Traditional blind filtering methods use predefined noise frequency and filter order, but they alter ECG biomarkers. Several Deep Learning-based ECG noise detection and classification methods exist, but no study compares recurrent neural network (RNN) and convolutional neural network (CNN) architectures and their complexity.
This paper introduces a knowledge-based ECG filtering system using Deep Learning to classify ECG noise types and compare popular computer vision model architectures in a practical Internet of Medical Things (IoMT) framework. Experimental results demonstrate that the CNN-based ECG noise classifier outperforms the RNN-based model in terms of performance and training time.
The study shows that AlexNet, visual geometry group (VGG), and residual network (ResNet) achieved over 70% accuracy, specificity, sensitivity, and F1 score across six datasets. VGG and ResNet performances were comparable, but VGG was more complex than ResNet, with only a 4.57% less F1 score.
This paper introduces a Deep Learning (DL) based ECG noise classifier for a knowledge-driven ECG filtering system, offering selective filtering to reduce signal distortion. Evaluation of various CNN and RNN-based models reveals VGG and Resnet outperform. Further, the VGG model is superior in terms of performance. But Resnet performs comparably to VGG with less model complexity.
由于生活节奏繁忙,自动心电图(ECG)信号分析在心脏病检测方面受到了广泛关注。然而,心电图信号容易受到噪声的影响,这会对心电图信号分析器的性能产生不利影响。传统的盲滤波方法使用预定义的噪声频率和滤波器阶数,但会改变心电图生物标志物。现已有几种基于深度学习的心电图噪声检测和分类方法,但尚无研究比较递归神经网络(RNN)和卷积神经网络(CNN)架构及其复杂性。
本文提出了一种基于知识的 ECG 滤波系统,使用深度学习对 ECG 噪声类型进行分类,并在实际的物联网(IoT)框架中比较流行的计算机视觉模型架构。实验结果表明,基于 CNN 的 ECG 噪声分类器在性能和训练时间方面优于基于 RNN 的模型。
研究表明,在六个数据集上,AlexNet、视觉几何组(VGG)和残差网络(ResNet)的准确率、特异性、灵敏度和 F1 评分均超过 70%。VGG 和 ResNet 的性能相当,但 VGG 比 ResNet 更复杂,F1 评分仅低 4.57%。
本文提出了一种基于深度学习(DL)的 ECG 噪声分类器,用于知识驱动的 ECG 滤波系统,提供有选择的滤波以减少信号失真。对各种基于 CNN 和 RNN 的模型进行评估,发现 VGG 和 Resnet 表现更好。此外,VGG 模型在性能方面更优。但是 Resnet 与 VGG 相比,模型复杂度更低,性能相当。