Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:186-189. doi: 10.1109/EMBC48229.2022.9871033.
Positron emission tomography (PET) can reveal metabolic activity in a voxelwise manner. PET analysis is commonly performed in a static manner by analyzing the standardized uptake value (SUV) obtained from the plateau region of PET acquisitions. A dynamic PET acquisition can provide a map of the spatiotemporal concentration of the tracer in vivo, hence conveying information about radiotracer delivery to tissue, its interaction with the target and washout. Therefore, tissue-specific biochemical properties are embedded in the shape of time activity curves (TACs), which are generally used for kinetic analysis. Conventionally, TACs are employed along with information about blood plasma activity concentration, i.e., the arterial input function (AIF), and specific compartmental models to obtain a full quantitative analysis of PET data. The main drawback of this approach is the need for invasive procedures requiring arterial blood sample collection during the whole PET scan. In this paper, we address the challenge of improving PET diagnostic accuracy through an alternative approach based on the analysis of time signal intensity patterns. Specifically, we demonstrate the diagnostic potential of tissue TACs provided by dynamic PET acquisition using various deep learning models. Our framework is shown to outperform the discriminative potential of classical SUV analysis, hence paving the way for more accurate PET-based lesion discrimination without additional acquisition time or invasive procedures. Clinical Relevance- The diagnostic accuracy of dynamic PET data exploited by deep-learning based time signal intensity pattern analysis is superior to that of static SUV imaging.
正电子发射断层扫描(PET)可以以体素方式揭示代谢活性。PET 分析通常以静态方式进行,通过分析从 PET 采集的平台区域获得的标准化摄取值(SUV)来进行分析。动态 PET 采集可以提供示踪剂在体内的时空浓度图,从而传递有关放射性示踪剂向组织输送、与靶标相互作用和洗脱的信息。因此,组织特异性生化特性嵌入在时间活动曲线(TAC)的形状中,这些 TAC 通常用于动力学分析。传统上,TAC 与有关血浆活性浓度的信息(即动脉输入函数(AIF))以及特定的隔室模型一起使用,以对 PET 数据进行全面定量分析。这种方法的主要缺点是需要在整个 PET 扫描期间进行侵入性程序,需要采集动脉血样。在本文中,我们通过基于时间信号强度模式分析的替代方法来解决提高 PET 诊断准确性的挑战。具体来说,我们使用各种深度学习模型展示了动态 PET 采集提供的组织 TAC 的诊断潜力。我们的框架被证明优于经典 SUV 分析的判别潜力,从而为更准确的基于 PET 的病变鉴别铺平了道路,而无需额外的采集时间或侵入性程序。临床意义-基于深度学习的时间信号强度模式分析利用的动态 PET 数据的诊断准确性优于静态 SUV 成像。