Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:3047-3050. doi: 10.1109/EMBC48229.2022.9871700.
Preterm infants in a neonatal intensive care unit (NICU) are continuously monitored for their vital signs, such as heart rate and oxygen saturation. Body motion patterns are documented intermittently by clinical observations. Changing motion patterns in preterm infants are associated with maturation and clinical events such as late-onset sepsis and seizures. However, continuous motion monitoring in the NICU setting is not yet performed. Video-based motion monitoring is a promising method due to its non-contact nature and therefore unobtrusiveness. This study aims to determine the feasibility of simple video-based methods for infant body motion detection. We investigated and compared four methods to detect the motion in videos of infants, using two datasets acquired with different types of cameras. The thermal dataset contains 32 hours of annotated videos from 13 infants in open beds. The RGB dataset contains 9 hours of annotated videos from 5 infants in incubators. The compared methods include background substruction (BS), sparse optical flow (SOF), dense optical flow (DOF), and oriented FAST and rotated BRIEF (ORB). The detection performance and computation time were evaluated by the area under receiver operating curves (AUC) and run time. We conducted experiments to detect motion and gross motion respectively. In the thermal dataset, the best performance of both experiments is achieved by BS with mean (standard deviation) AUCs of 0.86 (0.03) and 0.93 (0.03). In the RGB dataset, SOF outperforms the other methods in both experiments with AUCs of 0.82 (0.10) and 0.91 (0.05). All methods are efficient to be integrated into a camera system when using low-resolution thermal cameras.
早产儿在新生儿重症监护病房(NICU)中,其生命体征(如心率和血氧饱和度)持续受到监测。身体运动模式通过临床观察间歇性地记录。早产儿的运动模式变化与成熟和临床事件有关,如晚发性败血症和癫痫发作。然而,NICU 环境中尚未进行连续的运动监测。基于视频的运动监测是一种很有前途的方法,因为它是非接触式的,因此不会引人注意。本研究旨在确定基于简单视频的方法用于婴儿身体运动检测的可行性。我们研究并比较了四种方法,以使用两种不同类型的摄像机采集的数据集来检测婴儿视频中的运动。热数据集包含 13 名婴儿在开放式病床中 32 小时的注释视频。RGB 数据集包含 5 名婴儿在孵化器中 9 小时的注释视频。比较的方法包括背景减除(BS)、稀疏光流(SOF)、密集光流(DOF)和定向 FAST 和旋转 BRIEF(ORB)。通过接收器操作曲线下的面积(AUC)和运行时间来评估检测性能和计算时间。我们分别进行了检测运动和粗运动的实验。在热数据集中,BS 在两个实验中的表现最佳,平均(标准差)AUC 分别为 0.86(0.03)和 0.93(0.03)。在 RGB 数据集中,SOF 在两个实验中均优于其他方法,AUC 分别为 0.82(0.10)和 0.91(0.05)。当使用低分辨率热摄像机时,所有方法都可以有效地集成到摄像机系统中。