Suppr超能文献

基于随机森林的 CT 图像神经母细胞瘤 MYCN 状态预测分类器

A Random Forest-based Classifier for MYCN Status Prediction in Neuroblastoma using CT Images.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:3854-3857. doi: 10.1109/EMBC48229.2022.9871349.

Abstract

Neuroblastoma (NB) is the most common extracranial solid tumor in childhood. Genomic amplification of MYCN is associated with poor outcomes and is detected in 16% of all NB cases. CT scans and MRI are the imaging techniques recommended for diagnosis and disease staging. The assessment of imaging features such as tumor volume, shape, and local extension represent relevant prognostic information. Radiogenomics have shown powerful results in the assessment of the genotype based on imaging findings automatically extracted from medical images. In this work, random forest was used to classify the MYCN amplification using radiomic features extracted from CT slices in a population of 46 NB patients. The learning model showed an area under the curve (AUC) of 0.85 ± 0.13, suggesting that radiomic-based methodologies might be helpful in the extraction of information that is not accessible by human naked eyes but could aid the clinicians on the diagnosis and treatment plan definition. Clinical relevance - This approach represents a random forest-based model to predict the MYCN amplification in NB patients that could give a faster, earlier, and repeatable analysis of the tumor along the time.

摘要

神经母细胞瘤(NB)是儿童期最常见的颅外实体瘤。MYCN 基因扩增与不良预后相关,在所有 NB 病例中约有 16%存在该情况。CT 扫描和 MRI 是推荐用于诊断和疾病分期的影像学技术。评估肿瘤体积、形状和局部扩展等影像学特征是重要的预后信息。基于从医学图像中自动提取的影像学发现的影像基因组学在评估基因型方面显示出强大的结果。在这项工作中,随机森林被用于使用从 46 名 NB 患者的 CT 切片中提取的放射组学特征来分类 MYCN 扩增。学习模型的曲线下面积(AUC)为 0.85±0.13,表明基于放射组学的方法可能有助于提取人类肉眼无法获取但可能有助于临床医生进行诊断和治疗计划制定的信息。临床相关性-该方法代表了一种基于随机森林的模型,可以预测 NB 患者的 MYCN 扩增,从而可以更快、更早、更重复地对肿瘤进行分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验