Yeow Ling Yun, Teh Yu Xuan, Lu Xinyu, Srinivasa Arvind Channarayapatna, Tan Eelin, Tan Timothy Shao Ern, Tang Phua Hwee, Kn Bhanu Prakash
From the Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR).
Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University.
J Comput Assist Tomogr. 2023;47(5):786-795. doi: 10.1097/RCT.0000000000001480. Epub 2023 May 26.
MYCN oncogene amplification is closely linked to high-grade neuroblastoma with poor prognosis. Accurate quantification is essential for risk assessment, which guides clinical decision making and disease management. This study proposes an end-to-end deep-learning framework for automatic tumor segmentation of pediatric neuroblastomas and radiomics features-based classification of MYCN gene amplification.
Data from pretreatment contrast-enhanced computed tomography scans and MYCN status from 47 cases of pediatric neuroblastomas treated at a tertiary children's hospital from 2009 to 2020 were reviewed. Automated tumor segmentation and grading pipeline includes (1) a modified U-Net for tumor segmentation; (2) extraction of radiomic textural features; (3) feature-based ComBat harmonization for removal of variabilities across scanners; (4) feature selection using 2 approaches, namely, ( a ) an ensemble approach and ( b ) stepwise forward-and-backward selection method using logistic regression classifier; and (5) radiomics features-based classification of MYCN gene amplification using machine learning classifiers.
Median train/test Dice score for modified U-Net was 0.728/0.680. The top 3 features from the ensemble approach were neighborhood gray-tone difference matrix (NGTDM) busyness, NGTDM strength, and gray-level run-length matrix (GLRLM) low gray-level run emphasis, whereas those from the stepwise approach were GLRLM low gray-level run emphasis, GLRLM high gray-level run emphasis, and NGTDM coarseness. The top-performing tumor classification algorithm achieved a weighted F1 score of 97%, an area under the receiver operating characteristic curve of 96.9%, an accuracy of 96.97%, and a negative predictive value of 100%. Harmonization-based tumor classification improved the accuracy by 2% to 3% for all classifiers.
The proposed end-to-end framework achieved high accuracy for MYCN gene amplification status classification.
MYCN癌基因扩增与预后不良的高级别神经母细胞瘤密切相关。准确量化对于风险评估至关重要,风险评估可指导临床决策和疾病管理。本研究提出了一种用于小儿神经母细胞瘤自动肿瘤分割及基于影像组学特征的MYCN基因扩增分类的端到端深度学习框架。
回顾了2009年至2020年在一家三级儿童医院接受治疗的47例小儿神经母细胞瘤患者的治疗前对比增强计算机断层扫描数据及MYCN状态。自动肿瘤分割及分级流程包括:(1)用于肿瘤分割的改良U-Net;(2)影像组学纹理特征提取;(3)基于特征的ComBat归一化以消除不同扫描仪间的差异;(4)使用两种方法进行特征选择,即(a)集成方法和(b)使用逻辑回归分类器的逐步向前和向后选择方法;(5)使用机器学习分类器基于影像组学特征对MYCN基因扩增进行分类。
改良U-Net的训练/测试Dice分数中位数为0.728/0.680。集成方法的前三大特征为邻域灰度差矩阵(NGTDM)的忙碌度、NGTDM强度和灰度游程长度矩阵(GLRLM)的低灰度游程强调,而逐步方法的前三大特征为GLRLM的低灰度游程强调、GLRLM的高灰度游程强调和NGTDM的粗糙度。表现最佳的肿瘤分类算法的加权F1分数为97%,受试者工作特征曲线下面积为96.9%,准确率为96.97%,阴性预测值为100%。基于归一化的肿瘤分类使所有分类器的准确率提高了2%至3%。
所提出的端到端框架在MYCN基因扩增状态分类方面实现了高精度。