Suppr超能文献

设计一个分类器,以确定接受 T 型管试验的患者的最佳拔管时机。

Design of a Classifier to Determine the Optimal Moment of Weaning of Patients undergoing to the T-tube Test.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:422-425. doi: 10.1109/EMBC48229.2022.9871242.

Abstract

Weaning from mechanical ventilation in the intensive care unit is a complex and relevant clinical problem. Prolonged mechanical ventilation leads to a variety of medical complications that increase hospital stay and costs, in addition to contributing the morbidity and mortality, affecting long-term quality of life. This work presents a methodology to establish the optimal moment of extubation of a patient connected to a mechanical ventilator, submitted to the T-Tube test. 133 patients are analyzed, classified into two groups: successful group (94 patients) and failed group (39 patients). The behaviour of the respiratory function is characterized through the mean, standard deviation, kurtosis, skewness, interquartile range and coefficient of interval of the respiratory flow time series. To classify these patients, neural networks (NN) and support vector machines (SVM) classifier are used, considering time intervals of the 450s, 600s and 900s. According to the results, the best classification is obtained using the SVM. Clinical Relevance-The paper determines the optimal moment for weaning a patient connected to a mechanical ventilator using machine learning techniques.

摘要

在重症监护病房中脱机机械通气是一个复杂且相关的临床问题。长时间机械通气会导致各种医疗并发症,不仅会增加住院时间和费用,还会导致发病率和死亡率上升,影响长期生活质量。这项工作提出了一种方法,用于确定连接到机械呼吸机并接受 T 管试验的患者的最佳拔管时机。分析了 133 名患者,将其分为两组:成功组(94 名患者)和失败组(39 名患者)。通过呼吸流量时间序列的均值、标准差、峰度、偏度、四分位距和区间系数来描述呼吸功能的行为。为了对这些患者进行分类,使用神经网络(NN)和支持向量机(SVM)分类器,考虑 450s、600s 和 900s 的时间间隔。根据结果,使用 SVM 获得了最佳分类。临床相关性-本文使用机器学习技术确定了连接到机械呼吸机的患者的最佳脱机时机。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验