Suppr超能文献

人工智能在患者脱机过程中心肺模式分析。

Analysis of the Cardiorespiratory Pattern of Patients Undergoing Weaning Using Artificial Intelligence.

机构信息

Faculty of Engineering, Universidad Autónoma de Bucaramanga; Bucaramanga 680003, Colombia.

Automatic Control Department (ESAII), The Barcelona East School of Engineering (EEBE), Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain.

出版信息

Int J Environ Res Public Health. 2023 Mar 1;20(5):4430. doi: 10.3390/ijerph20054430.

Abstract

The optimal extubating moment is still a challenge in clinical practice. Respiratory pattern variability analysis in patients assisted through mechanical ventilation to identify this optimal moment could contribute to this process. This work proposes the analysis of this variability using several time series obtained from the respiratory flow and electrocardiogram signals, applying techniques based on artificial intelligence. 154 patients undergoing the extubating process were classified in three groups: successful group, patients who failed during weaning process, and patients who after extubating failed before 48 hours and need to reintubated. Power Spectral Density and time-frequency domain analysis were applied, computing Discrete Wavelet Transform. A new Q index was proposed to determine the most relevant parameters and the best decomposition level to discriminate between groups. Forward selection and bidirectional techniques were implemented to reduce dimensionality. Linear Discriminant Analysis and Neural Networks methods were implemented to classify these patients. The best results in terms of accuracy were, 84.61 ± 3.1% for successful versus failure groups, 86.90 ± 1.0% for successful versus reintubated groups, and 91.62 ± 4.9% comparing the failure and reintubated groups. Parameters related to Q index and Neural Networks classification presented the best performance in the classification of these patients.

摘要

在临床实践中,最佳拔管时机仍然是一个挑战。通过对机械通气辅助的患者进行呼吸模式可变性分析,以识别这个最佳时机,可以促进这个过程。本工作提出使用从呼吸流量和心电图信号中获得的几个时间序列来分析这种可变性,应用基于人工智能的技术。对 154 名接受拔管过程的患者进行了分类,分为三组:成功组、脱机过程中失败的患者组和拔管后 48 小时内再次插管失败的患者组。应用了功率谱密度和时频域分析,计算了离散小波变换。提出了一个新的 Q 指数来确定最相关的参数和最佳分解水平,以区分组间差异。实现了前向选择和双向技术来降低维度。实现了线性判别分析和神经网络方法来对这些患者进行分类。在准确性方面,成功组与失败组的最佳结果为 84.61 ± 3.1%,成功组与再次插管组的最佳结果为 86.90 ± 1.0%,失败组与再次插管组的最佳结果为 91.62 ± 4.9%。与 Q 指数和神经网络分类相关的参数在这些患者的分类中表现出了最佳的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2c7/10002224/f3cc3ccffb02/ijerph-20-04430-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验