Academy of Scientific and Innovative Research, CSIR-Human Resource Development Center (CSIR-HRDC) Campus, Postal staff College Area, Ghaziabad, Uttar Pradesh, 201002, India.
Electronic Structure Theory Group, Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, 411008, India.
Chemphyschem. 2023 Jan 3;24(1):e202200340. doi: 10.1002/cphc.202200340. Epub 2022 Oct 18.
Electronically excited atoms or molecules in an environment are often subject to interatomic/intermolecular Coulombic decay (ICD) and/or electron transfer mediated decay (ETMD) mechanisms. A few of the numerous variables that can impact these non-radiative decay mechanisms include bond distance, the number of nearby atoms or molecules, and the polarisation effect. In this paper, we have studied the effect of protonation and deprotonation on the ionization potential (IP), double ionization potential (DIP), and lifetime (or decay width) of the temporary bound state in these non-radiative decay processes. We have chosen LiH-NH and LiH-H O as test systems. The equation of motion coupled cluster singles and doubles method augmented by complex absorbing potential (CAP-EOM-CCSD) has been used in calculating the energetic position of the decaying state and the system's decay rate. Deprotonation of LiH-NH /LiH-H O either from the metal center (LiH) or from ammonia/water lowers the IP and DIP compared to the neutral systems. In contrast, protonation increases these quantities compared to neutral systems. The protonation closes the inner valence state relaxation channels for ICD/ETMD. For example, the decay of the O-2s/N-2s state stops in protonated systems (LiH -H O, LiH -NH , and LiH-NH ). Our study also shows that the efficiency, i. e., the rate of ICD/ETMD, can be altered by protonation and deprotonation. It is expected to have implications for chemical and biological systems.
处于环境中的电子激发原子或分子通常会受到原子间/分子间库仑衰变 (ICD) 和/或电子转移介导衰变 (ETMD) 机制的影响。许多可能影响这些非辐射衰变机制的变量包括键距、附近原子或分子的数量以及极化效应。在本文中,我们研究了质子化和去质子化对这些非辐射衰变过程中临时束缚态的电离势 (IP)、双电离势 (DIP) 和寿命(或衰变宽度)的影响。我们选择了 LiH-NH 和 LiH-H O 作为测试系统。使用运动方程耦合簇单双加合复杂吸收势 (CAP-EOM-CCSD) 方法计算衰减态的能量位置和系统的衰减速率。与中性系统相比,LiH-NH/LiH-H O 从金属中心 (LiH) 或氨/水去质子化会降低 IP 和 DIP。相比之下,质子化会增加这些与中性系统相比的数量。质子化会关闭 ICD/ETMD 的内价态弛豫通道。例如,在质子化系统中,O-2s/N-2s 态的衰变停止(LiH-H O、LiH-NH 和 LiH-NH )。我们的研究还表明,质子化和去质子化可以改变效率,即 ICD/ETMD 的速率。这有望对化学和生物系统产生影响。