Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Heidelberg 69120, Germany.
Laboratory of Quantum Chemical Modeling of Molecular Systems, Irkutsk State University, Karl Marx Str. 1, 664003 Irkutsk, Russia.
J Phys Chem Lett. 2023 Feb 16;14(6):1418-1426. doi: 10.1021/acs.jpclett.2c03654. Epub 2023 Feb 2.
After ionization of an inner-valence electron of molecules, the resulting cation-radicals store substantial internal energy which, if sufficient, can trigger ejection of an additional electron in an Auger decay usually followed by molecule fragmentation. In the environment, intermolecular Coulombic decay (ICD) and electron-transfer mediated decay (ETMD) are also operative, resulting in one or two electrons being ejected from a neighbor, thus preventing the fragmentation of the initially ionized molecule. These relaxation processes are investigated theoretically for prototypical heterocycle-water complexes of imidazole, pyrrole, and pyridine. It is found that the hydrogen-bonding site of the water molecule critically influences the nature and energetics of the electronic states involved, opening or closing certain relaxation processes of the inner-valence ionized system. Our results indicate that the relaxation mechanisms of biologically relevant systems with inner-valence vacancies on their carbon atoms can strongly depend on the presence of the electron-density donating or accepting neighbor, either water or another biomolecule.
分子的内壳层电子被电离后,生成的正离子自由基会储存大量的内部能量,如果能量足够,就可以在俄歇衰变中引发额外电子的发射,通常随后会发生分子的碎裂。在环境中,分子间库仑衰变(ICD)和电子转移介导的衰变(ETMD)也在起作用,导致一个或两个电子从相邻分子中被逐出,从而阻止最初被电离的分子发生碎裂。本文针对咪唑、吡咯和吡啶等杂环-水复合物的典型模型,从理论上研究了这些弛豫过程。研究发现,水分子的氢键结合位置对所涉及的电子态的性质和能量具有关键性影响,从而开启或关闭了内壳层离子化体系的某些弛豫过程。研究结果表明,碳原子上存在内壳层空穴的生物相关体系的弛豫机制可能强烈依赖于提供或接受电子密度的相邻体(如水或其他生物分子)的存在。