School of Social Work, University of North Carolina at Chapel Hill, 325 Pittsboro St., CB#3550, Chapel Hill, NC, 27599, USA.
School of Social Work, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
Soc Psychiatry Psychiatr Epidemiol. 2023 Feb;58(2):227-238. doi: 10.1007/s00127-022-02342-7. Epub 2022 Sep 10.
Most research on driving under the influence (DUI) has relied upon variable-centered methods that examine predictors/correlates of DUI. In the present study, we utilize a person-level approach-latent class analysis (LCA)-to model a typology of individuals reporting DUI. This allows us to understand the degree to which individuals drive under the influence of a particular substance or do so across multiple substance types.
We use public-use data collected between 2016 and 2019 from the National Survey on Drug Use and Health. The analytic sample was 189,472 participants with a focus on those reporting DUI of psychoactive substances in the past-year (n = 24,619). LCA was conducted using self-reported DUI of past-year alcohol, cannabis, cocaine, heroin, hallucinogens, and methamphetamine as indicator variables.
More than 1 in 10 Americans reported a DUI within the past-year. One in five people who reported DUI of one substance also reported DUI of at least one additional substance. Using LCA to model heterogeneity among individuals reporting DUI, four classes emerged: "Alcohol Only" (55%), "Cannabis and Alcohol" (36%), "Polydrug" (5%), and "Methamphetamine" (3%). Rates of risk propensity, drug involvement, illicit drug use disorders, and criminal justice system involvement were highest among members of the "Polydrug" and "Methamphetamine" classes.
Drug treatment centers should take care to include discussions of the dangers and decision-making processes related to DUI of the full spectrum of illicit substances. Greater investment in drug treatment across the service continuum, including the justice system, could prevent/reduce future DUI episodes.
大多数关于酒后驾车(DUI)的研究都依赖于变量中心方法,这些方法研究 DUI 的预测因素/相关因素。在本研究中,我们采用个体水平的方法——潜在类别分析(LCA)——来构建报告 DUI 的个体的类型学。这使我们能够了解个人受特定物质影响或跨多种物质类型驾驶的程度。
我们使用了 2016 年至 2019 年期间从国家药物使用和健康调查中收集的公共使用数据。分析样本为 189472 名参与者,重点关注过去一年报告过酒后驾车的参与者(n=24619)。LCA 使用自我报告的过去一年中酒精、大麻、可卡因、海洛因、迷幻剂和冰毒的 DUI 作为指示变量进行。
超过十分之一的美国人报告过去一年中曾酒后驾车。五分之一报告过一种物质 DUI 的人也报告过至少一种其他物质的 DUI。使用 LCA 对报告 DUI 的个体的异质性进行建模,出现了四个类别:“仅酒精”(55%)、“大麻和酒精”(36%)、“多药”(5%)和“冰毒”(3%)。“多药”和“冰毒”类别的成员具有最高的风险倾向率、药物参与度、非法药物使用障碍和刑事司法系统参与度。
药物治疗中心应注意包括讨论与使用各种非法物质酒后驾车相关的危险和决策过程。在整个服务范围内,包括司法系统,对药物治疗的更大投资可以预防/减少未来的 DUI 事件。