Suppr超能文献

朝向酒精和药物影响下驾驶的类型学。

Toward a typology of driving under the influence of alcohol and drugs.

机构信息

School of Social Work, University of North Carolina at Chapel Hill, 325 Pittsboro St., CB#3550, Chapel Hill, NC, 27599, USA.

School of Social Work, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.

出版信息

Soc Psychiatry Psychiatr Epidemiol. 2023 Feb;58(2):227-238. doi: 10.1007/s00127-022-02342-7. Epub 2022 Sep 10.

Abstract

PURPOSE

Most research on driving under the influence (DUI) has relied upon variable-centered methods that examine predictors/correlates of DUI. In the present study, we utilize a person-level approach-latent class analysis (LCA)-to model a typology of individuals reporting DUI. This allows us to understand the degree to which individuals drive under the influence of a particular substance or do so across multiple substance types.

METHODS

We use public-use data collected between 2016 and 2019 from the National Survey on Drug Use and Health. The analytic sample was 189,472 participants with a focus on those reporting DUI of psychoactive substances in the past-year (n = 24,619). LCA was conducted using self-reported DUI of past-year alcohol, cannabis, cocaine, heroin, hallucinogens, and methamphetamine as indicator variables.

RESULTS

More than 1 in 10 Americans reported a DUI within the past-year. One in five people who reported DUI of one substance also reported DUI of at least one additional substance. Using LCA to model heterogeneity among individuals reporting DUI, four classes emerged: "Alcohol Only" (55%), "Cannabis and Alcohol" (36%), "Polydrug" (5%), and "Methamphetamine" (3%). Rates of risk propensity, drug involvement, illicit drug use disorders, and criminal justice system involvement were highest among members of the "Polydrug" and "Methamphetamine" classes.

CONCLUSION

Drug treatment centers should take care to include discussions of the dangers and decision-making processes related to DUI of the full spectrum of illicit substances. Greater investment in drug treatment across the service continuum, including the justice system, could prevent/reduce future DUI episodes.

摘要

目的

大多数关于酒后驾车(DUI)的研究都依赖于变量中心方法,这些方法研究 DUI 的预测因素/相关因素。在本研究中,我们采用个体水平的方法——潜在类别分析(LCA)——来构建报告 DUI 的个体的类型学。这使我们能够了解个人受特定物质影响或跨多种物质类型驾驶的程度。

方法

我们使用了 2016 年至 2019 年期间从国家药物使用和健康调查中收集的公共使用数据。分析样本为 189472 名参与者,重点关注过去一年报告过酒后驾车的参与者(n=24619)。LCA 使用自我报告的过去一年中酒精、大麻、可卡因、海洛因、迷幻剂和冰毒的 DUI 作为指示变量进行。

结果

超过十分之一的美国人报告过去一年中曾酒后驾车。五分之一报告过一种物质 DUI 的人也报告过至少一种其他物质的 DUI。使用 LCA 对报告 DUI 的个体的异质性进行建模,出现了四个类别:“仅酒精”(55%)、“大麻和酒精”(36%)、“多药”(5%)和“冰毒”(3%)。“多药”和“冰毒”类别的成员具有最高的风险倾向率、药物参与度、非法药物使用障碍和刑事司法系统参与度。

结论

药物治疗中心应注意包括讨论与使用各种非法物质酒后驾车相关的危险和决策过程。在整个服务范围内,包括司法系统,对药物治疗的更大投资可以预防/减少未来的 DUI 事件。

相似文献

1
Toward a typology of driving under the influence of alcohol and drugs.朝向酒精和药物影响下驾驶的类型学。
Soc Psychiatry Psychiatr Epidemiol. 2023 Feb;58(2):227-238. doi: 10.1007/s00127-022-02342-7. Epub 2022 Sep 10.

本文引用的文献

3
LSD use in the United States: Trends, correlates, and a typology of us.在美国使用 LSD:趋势、相关因素和使用类型学。
Drug Alcohol Depend. 2021 Jun 1;223:108715. doi: 10.1016/j.drugalcdep.2021.108715. Epub 2021 Apr 20.
4
Prevalence and Correlates of Driving Under the Influence of Cannabis in the U.S.美国吸食大麻后驾车的流行率及相关因素
Am J Prev Med. 2021 Jun;60(6):e251-e260. doi: 10.1016/j.amepre.2021.01.021. Epub 2021 Mar 13.
6
Margin for error: examining racial and ethnic trends in adolescent risk propensity.误差幅度:青少年风险倾向的种族和民族趋势分析。
Soc Psychiatry Psychiatr Epidemiol. 2021 Jun;56(6):993-1002. doi: 10.1007/s00127-021-02026-8. Epub 2021 Jan 19.
7
Marijuana Is Not the Only Cause of Drugged Driving.大麻并非导致药物影响下驾驶的唯一原因。
JAMA Intern Med. 2021 Feb 1;181(2):293. doi: 10.1001/jamainternmed.2020.6272.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验