Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, 10691 Stockholm, Sweden.
Uppsala Genome Center, Department of Immunology, Genetics and Pathology, Uppsala University, Box 815, 751 08 Uppsala, Sweden.
Curr Biol. 2022 Oct 24;32(20):4360-4371.e6. doi: 10.1016/j.cub.2022.08.042. Epub 2022 Sep 9.
Supergenes govern multi-trait-balanced polymorphisms in a wide range of systems; however, our understanding of their origins and evolution remains incomplete. The reciprocal placement of stigmas and anthers in pin and thrum floral morphs of distylous species constitutes an iconic example of a balanced polymorphism governed by a supergene, the distyly S-locus. Recent studies have shown that the Primula and Turnera distyly supergenes are both hemizygous in thrums, but it remains unknown whether hemizygosity is pervasive among distyly S-loci. As hemizygosity has major consequences for supergene evolution and loss, clarifying whether this genetic architecture is shared among distylous species is critical. Here, we have characterized the genetic architecture and evolution of the distyly supergene in Linum by generating a chromosome-level genome assembly of Linum tenue, followed by the identification of the S-locus using population genomic data. We show that hemizygosity and thrum-specific expression of S-linked genes, including a pistil-expressed candidate gene for style length, are major features of the Linum S-locus. Structural variation is likely instrumental for recombination suppression, and although the non-recombining dominant haplotype has accumulated transposable elements, S-linked genes are not under relaxed purifying selection. Our findings reveal remarkable convergence in the genetic architecture and evolution of independently derived distyly supergenes, provide a counterexample to classic inversion-based supergenes, and shed new light on the origin and maintenance of an iconic floral polymorphism.
超基因控制着广泛系统中多性状平衡的多态性;然而,我们对它们的起源和进化的理解仍然不完整。在二型花柱植物的柱头和花药在针状和丝状花型中的相互位置,构成了由超基因——二型花柱 S 基因座控制的平衡多态性的标志性例子。最近的研究表明,报春花和特纳二型花柱超基因在丝状花粉中都是半合子,但半合子是否普遍存在于二型花柱 S 基因座中仍不清楚。由于半合子对超基因进化和丢失有重大影响,澄清这种遗传结构是否在二型花柱植物中共享是至关重要的。在这里,我们通过生成亚麻的染色体水平基因组组装,随后使用群体基因组数据鉴定 S 基因座,对亚麻的二型花柱超基因的遗传结构和进化进行了特征描述。我们表明,半合子和 S 连锁基因的丝状花粉特异性表达,包括一个与柱头长度相关的候选基因,是亚麻 S 基因座的主要特征。结构变异可能对重组抑制起作用,尽管非重组显性单倍型积累了转座元件,但 S 连锁基因不受放松的净化选择。我们的研究结果揭示了独立衍生的二型花柱超基因在遗传结构和进化上的显著趋同,为经典的基于倒位的超基因提供了一个反例,并为标志性花多态性的起源和维持提供了新的认识。