Suppr超能文献

新兴有机微污染物去除用下一代氧化石墨烯添加剂复合膜:分离、吸附和降解。

Next-generation graphene oxide additives composite membranes for emerging organic micropollutants removal: Separation, adsorption and degradation.

机构信息

National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China.

College of Ecology and Environment, Hainan University, Haikou, Hainan Province, 570228, China; Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, Permoserstr. 15, D-04318 Leipzig, Germany.

出版信息

Chemosphere. 2022 Dec;308(Pt 3):136333. doi: 10.1016/j.chemosphere.2022.136333. Epub 2022 Sep 7.

Abstract

In the past two decades, membrane technology has attracted considerable interest as a viable and promising method for water purification. Emerging organic micropollutants (EOMPs) in wastewater have trace, persistent, highly variable quantities and types, develop hazardous intermediates and are diffusible. These primary issues affect EOMPs polluted wastewater on an industrial scale differently than in a lab, challenging membranes-based EOMP removal. Graphene oxide (GO) promises state-of-the-art membrane synthesis technologies and use in EOMPs removal systems due to its superior physicochemical, mechanical, and electrical qualities and high oxygen content. This critical review highlights the recent advancements in the synthesis of next-generation GO membranes with diverse membrane substrates such as ceramic, polyethersulfone (PES), and polyvinylidene fluoride (PVDF). The EOMPs removal efficiencies of GO membranes in filtration, adsorption (incorporated with metal, nanomaterial in biodegradable polymer and biomimetic membranes), and degradation (in catalytic, photo-Fenton, photocatalytic and electrocatalytic membranes) and corresponding removal mechanisms of different EOMPs are also depicted. GO-assisted water treatment strategies were further assessed by various influencing factors, including applied water flow mode and membrane properties (e.g., permeability, hydrophily, mechanical stability, and fouling). GO additive membranes showed better permeability, hydrophilicity, high water flux, and fouling resistance than pristine membranes. Likewise, degradation combined with filtration is two times more effective than alone, while crossflow mode improves the photocatalytic degradation performance of the system. GO integration in polymer membranes enhances their stability, facilitates photocatalytic processes, and gravity-driven GO membranes enable filtration of pollutants at low pressure, making membrane filtration more inexpensive. However, simultaneous removal of multiple contaminants with contrasting characteristics and variable efficiencies in different systems demands further optimization in GO-mediated membranes. This review concludes with identifying future critical research directions to promote research for determining the GO-assisted OMPs removal membrane technology nexus and maximizing this technique for industrial application.

摘要

在过去的二十年中,膜技术作为一种可行且有前途的水净化方法引起了相当大的兴趣。废水中新兴的有机微污染物(EOMPs)具有痕量、持久性、高度变化的数量和类型,会产生危险的中间产物并具有扩散性。这些主要问题以不同于实验室的方式影响工业规模的 EOMPs 污染废水,给基于膜的 EOMPs 去除带来挑战。由于具有优异的物理化学、机械和电气特性以及高含氧量,氧化石墨烯(GO)有望成为最先进的膜合成技术,并应用于 EOMPs 去除系统。本综述重点介绍了在使用不同膜基质(如陶瓷、聚醚砜(PES)和聚偏氟乙烯(PVDF))合成下一代 GO 膜方面的最新进展。GO 膜在过滤、吸附(与金属、纳米材料在可生物降解聚合物和仿生膜中结合)和降解(在催化、光芬顿、光催化和电催化膜中)方面对 EOMPs 的去除效率,以及不同 EOMPs 的相应去除机制也进行了描述。GO 辅助水处理策略还通过各种影响因素(包括应用水流动模式和膜特性(如渗透性、亲水性、机械稳定性和污染))进行了评估。与原始膜相比,GO 添加剂膜表现出更好的渗透性、亲水性、高通量和抗污染性。同样,与过滤结合的降解比单独降解的效果好两倍,而错流模式可提高系统的光催化降解性能。GO 在聚合物膜中的整合提高了它们的稳定性,促进了光催化过程,而重力驱动的 GO 膜使污染物在低压下过滤成为可能,从而使膜过滤更便宜。然而,具有不同特征的多种污染物的同时去除以及在不同系统中的不同效率需要进一步优化 GO 介导的膜。本综述最后确定了未来的关键研究方向,以促进研究确定 GO 辅助 OMPs 去除膜技术的关系,并最大限度地提高该技术在工业应用中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验