Suppr超能文献

基于机器学习的 MDS-CBC 评分改善使血小板成为焦点,以优化血液学实验室中的涂片复查。

Machine learning-based improvement of MDS-CBC score brings platelets into the limelight to optimize smear review in the hematology laboratory.

机构信息

Service d'Hématologie-Immunologie-Transfusion, Hôpitaux Universitaires Paris Ile De France Ouest, APHP. Paris Saclay, Université Versailles Saint Quentin-Université Paris Saclay, Paris, France.

Service d'Hématologie biologique, Hôpitaux Universitaires Saint Louis, Lariboisière, Fernand Widal, Université Paris Diderot, Paris, France.

出版信息

BMC Cancer. 2022 Sep 10;22(1):972. doi: 10.1186/s12885-022-10059-8.

Abstract

BACKGROUND

Myelodysplastic syndromes (MDS) are clonal hematopoietic diseases of the elderly characterized by chronic cytopenias, ineffective and dysplastic haematopoiesis, recurrent genetic abnormalities and increased risk of progression to acute myeloid leukemia. A challenge of routine laboratory Complete Blood Counts (CBC) is to correctly identify MDS patients while simultaneously avoiding excess smear reviews. To optimize smear review, the latest generations of hematology analyzers provide new cell population data (CPD) parameters with an increased ability to screen MDS, among which the previously described MDS-CBC Score, based on Absolute Neutrophil Count (ANC), structural neutrophil dispersion (Ne-WX) and mean corpuscular volume (MCV). Ne-WX is increased in the presence of hypogranulated/degranulated neutrophils, a hallmark of dysplasia in the context of MDS or chronic myelomonocytic leukemia. Ne-WX and MCV are CPD derived from leukocytes and red blood cells, therefore the MDS-CBC score does not include any platelet-derived CPD. We asked whether this score could be improved by adding the immature platelet fraction (IPF), a CPD used as a surrogate marker of dysplastic thrombopoiesis.

METHODS

Here, we studied a cohort of more than 500 individuals with cytopenias, including 168 MDS patients. In a first step, we used Breiman's random forests algorithm, a machine-learning approach, to identify the most relevant parameters for MDS prediction. We then designed Classification And Regression Trees (CART) to evaluate, using resampling, the effect of model tuning parameters on performance and choose the "optimal" model across these parameters.

RESULTS

Using random forests algorithm, we identified Ne-WX and IPF as the strongest discriminatory predictors, explaining 37 and 33% of diagnoses respectively. To obtain "simplified" trees, which could be easily implemented into laboratory middlewares, we designed CART combining MDS-CBC score and IPF. Optimal results were obtained using a MDS-CBC score threshold equal to 0.23, and an IPF threshold equal to 3%.

CONCLUSIONS

We propose an extended MDS-CBC score, including CPD from the three myeloid lineages, to improve MDS diagnosis on routine laboratory CBCs and optimize smear reviews.

摘要

背景

骨髓增生异常综合征(MDS)是一种老年人克隆性造血疾病,其特征为慢性血细胞减少、无效和发育不良的造血、反复出现的遗传异常以及向急性髓系白血病进展的风险增加。常规实验室全血细胞计数(CBC)的一个挑战是正确识别 MDS 患者,同时避免过多的涂片复查。为了优化涂片复查,最新一代的血液分析仪提供了新的细胞群体数据(CPD)参数,这些参数具有更高的筛查 MDS 的能力,其中包括以前描述的基于绝对中性粒细胞计数(ANC)、结构中性粒细胞分散(Ne-WX)和平均红细胞体积(MCV)的 MDS-CBC 评分。在颗粒减少/脱颗粒中性粒细胞存在的情况下,Ne-WX 增加,这是 MDS 或慢性粒单核细胞白血病中发育不良的一个标志。Ne-WX 和 MCV 是源自白细胞和红细胞的 CPD,因此 MDS-CBC 评分不包括任何血小板衍生的 CPD。我们想知道,通过添加不成熟血小板分数(IPF)是否可以改善该评分,IPF 是一种作为发育不良性血小板生成的替代标志物的 CPD。

方法

在这里,我们研究了一组超过 500 名有血细胞减少症的个体,其中包括 168 名 MDS 患者。在第一步中,我们使用了 Breiman 的随机森林算法,这是一种机器学习方法,用于识别最相关的 MDS 预测参数。然后,我们设计了分类和回归树(CART),使用重采样来评估模型调整参数对性能的影响,并在这些参数之间选择“最佳”模型。

结果

使用随机森林算法,我们确定了 Ne-WX 和 IPF 是最强的鉴别预测因子,分别解释了 37%和 33%的诊断。为了获得可轻松集成到实验室中间件中的“简化”树,我们设计了结合 MDS-CBC 评分和 IPF 的 CART。使用等于 0.23 的 MDS-CBC 评分阈值和等于 3%的 IPF 阈值,可获得最佳结果。

结论

我们提出了一种扩展的 MDS-CBC 评分,包括来自三个髓系谱系的 CPD,以改善常规实验室 CBC 对 MDS 的诊断,并优化涂片复查。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4673/9464379/8ca942f296c6/12885_2022_10059_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验