Suppr超能文献

基于机器学习的全血细胞计数数据骨髓衰竭综合征预测分类器。

Machine-learning-based predictive classifier for bone marrow failure syndrome using complete blood count data.

作者信息

Seo Jeongmin, Lee Chansub, Koh Youngil, Sun Choong Hyun, Lee Jong-Mi, An Hong Yul, Kim Myungshin

机构信息

Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.

Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea.

出版信息

iScience. 2024 Oct 1;27(11):111082. doi: 10.1016/j.isci.2024.111082. eCollection 2024 Nov 15.

Abstract

Accurate risk assessment of bone marrow failure syndrome (BMFS) is crucial for early diagnosis and intervention. Interpreting complete blood count (CBC) data is challenging without hematological expertise. To support primary physicians, we developed a predictive model using basic demographics and CBC data collected retrospectively from two major hospitals in South Korea. Binary classifiers for aplastic anemia and myelodysplastic syndrome were created and combined to form a BMFS classifier. The model demonstrated high performance in distinguishing BMFS, with consistent results across different CBC feature sets, confirmed by external validation. This algorithm provides a practical guide for primary physicians to identify BMFS based on initial CBC data, aiding in effective triage, timely referrals, and improved patient care.

摘要

准确评估骨髓衰竭综合征(BMFS)的风险对于早期诊断和干预至关重要。没有血液学专业知识,解读全血细胞计数(CBC)数据具有挑战性。为了支持基层医生,我们利用从韩国两家主要医院回顾性收集的基本人口统计学和CBC数据开发了一个预测模型。创建了再生障碍性贫血和骨髓增生异常综合征的二元分类器,并将其组合形成BMFS分类器。该模型在区分BMFS方面表现出高性能,在不同的CBC特征集上结果一致,外部验证证实了这一点。该算法为基层医生基于初始CBC数据识别BMFS提供了实用指南,有助于进行有效的分诊、及时转诊并改善患者护理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1711/11535363/810ccf53e183/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验