State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China; Key Laboratory of Icing and Anti/De-icing, China Aerodynamics Research and Development Center, Mianyang, Sichuan 621000, China.
J Colloid Interface Sci. 2023 Jan;629(Pt A):582-592. doi: 10.1016/j.jcis.2022.08.153. Epub 2022 Aug 29.
Photothermal responsive slippery surfaces with switchable superwettability are promising in the fields of biomedicine, self-cleaning, anti-corrosion, and lab-on-a-chip systems. However, the development of a light switchable slippery surface that combines high-performance photothermal materials with hierarchical microstructures of special orientation remains challenging, which limits the applications in anisotropic droplet manipulation. Herein, we demonstrate a photothermal responsive slippery surface based on laser-structured graphene and polyvinylidene difluoride composites (L-G@PVDF) for controllable droplet manipulation. The L-G@PVDF film exhibits high light absorption (∼95.4%) in the visible and NIR region. After lubricating with paraffin, the resultant surface shows excellent self-healing ability and light-responsive wettability change due to the photothermal effect of L-G@PVDF and the hot melting effect of paraffin. Additionally, by introducing anisotropic grooved structures, the paraffin-infused L-G@PVDF surface displays anisotropic wettability that further affects droplet manipulation under light irradiation. Also, the photothermal responsive slippery property endows the paraffin-infused L-G@PVDF surface with excellent anti-frosting and de-icing capability. Moreover, the smart paraffin-infused L-G@PVDF surface can be combined with a microfluidics chip for light-driven automatic sampling. This study offers insight into the rational design of photothermal responsive slippery surfaces for controllable droplet manipulation.
具有可切换超润湿性的光热响应性滑润表面在生物医学、自清洁、防腐蚀和芯片上实验室系统等领域具有广阔的应用前景。然而,开发一种将高性能光热材料与特殊取向的分层微结构相结合的光开关滑润表面仍然具有挑战性,这限制了其在各向异性液滴操控方面的应用。在此,我们展示了一种基于激光结构化石墨烯和聚偏二氟乙烯复合材料(L-G@PVDF)的光热响应性滑润表面,用于可控的液滴操控。L-G@PVDF 薄膜在可见光和近红外区域具有高的光吸收率(约 95.4%)。经过石蜡润滑后,由于 L-G@PVDF 的光热效应和石蜡的热熔效应,所得表面表现出优异的自修复能力和光响应润湿性变化。此外,通过引入各向异性槽状结构,石蜡注入的 L-G@PVDF 表面表现出各向异性的润湿性,这进一步影响了在光照射下的液滴操控。此外,光热响应性滑润特性赋予了石蜡注入的 L-G@PVDF 表面优异的抗结霜和除冰能力。此外,智能石蜡注入的 L-G@PVDF 表面可以与微流控芯片结合,用于光驱动自动采样。本研究为可控液滴操控的光热响应性滑润表面的合理设计提供了思路。