Gao Hongmei, Xiao Zhaohui, Du Shiqian, Liu Tianyang, Huang Yu-Cheng, Shi Jianqiao, Zhu Yanwei, Huang Gen, Zhou Bo, He Yongmin, Dong Chung-Li, Li Yafei, Chen Ru, Wang Shuangyin
State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, National Supercomputer Centers in Changsha, Hunan University, Changsha, Hunan, 410082.
State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228.
Angew Chem Int Ed Engl. 2023 Dec 4;62(49):e202313954. doi: 10.1002/anie.202313954. Epub 2023 Oct 31.
Due to the robust oxidation conditions in strong acid oxygen evolution reaction (OER), developing an OER electrocatalyst with high efficiency remains challenging in polymer electrolyte membrane (PEM) water electrolyzer. Recent theoretical research suggested that reducing the coordination number of Ir-O is feasible to reduce the energy barrier of the rate-determination step, potentially accelerating the OER. Inspired by this, we experimentally verified the Ir-O coordination number's role at model catalysts, then synthesized low-coordinated IrO nanoparticles toward a durable PEM water electrolyzer. We first conducted model studies on commercial rutile-IrO using plasma-based defect engineering. The combined in situ X-ray absorption spectroscopy (XAS) analysis and computational studies clarify why the decreased coordination numbers increase catalytic activity. Next, under the model studies' guidelines, we explored a low-coordinated Ir-based catalyst with a lower overpotential of 231 mV@10 mA cm accompanied by long durability (100 h) in an acidic OER. Finally, the assembled PEM water electrolyzer delivers a low voltage (1.72 V@1 A cm ) as well as excellent stability exceeding 1200 h (@1 A cm ) without obvious decay. This work provides a unique insight into the role of coordination numbers, paving the way for designing Ir-based catalysts for PEM water electrolyzers.
由于在强酸析氧反应(OER)中存在强烈的氧化条件,因此在聚合物电解质膜(PEM)水电解槽中开发高效的OER电催化剂仍然具有挑战性。最近的理论研究表明,降低Ir-O的配位数对于降低速率决定步骤的能垒是可行的,这有可能加速OER。受此启发,我们通过实验验证了Ir-O配位数在模型催化剂中的作用,然后合成了低配位的IrO纳米颗粒,以用于耐用的PEM水电解槽。我们首先使用基于等离子体的缺陷工程对商业金红石型IrO进行了模型研究。原位X射线吸收光谱(XAS)分析与计算研究相结合,阐明了配位数降低为何会提高催化活性。接下来,在模型研究的指导下,我们探索了一种低配位的Ir基催化剂,在酸性OER中,其过电位较低,为231 mV@10 mA cm,同时具有长耐久性(100 h)。最后,组装好的PEM水电解槽提供了低电压(1.72 V@1 A cm)以及超过1200 h(@1 A cm)的出色稳定性,且无明显衰减。这项工作为配位数的作用提供了独特的见解,为设计用于PEM水电解槽的Ir基催化剂铺平了道路。