Suppr超能文献

使用由低密度聚乙烯制备的活性炭催化剂的钒氧化还原液流电池。

Vanadium Redox Flow Battery Using Activated Carbon Catalyst Produced from Low-Density Polyethylene.

作者信息

Lim Hyeonsoo, Shin Mingyu, Phae Chae-Gun, Kwon Yongchai

机构信息

Department of New and Renewable Energy Convergence, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, 01811, Seoul, Republic of Korea.

Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, 01811, Seoul, Republic of Korea.

出版信息

Chem Asian J. 2022 Nov 16;17(22):e202200754. doi: 10.1002/asia.202200754. Epub 2022 Sep 26.

Abstract

Carbonized and activated low-density polyethylene (LDPE) is suggested as a carbon catalyst for vanadium redox flow battery (VRFB). This carbon catalyst has many surface oxygen functional groups and a large surface area, while such benefits are achieved through activation of carbonized LDPE. According to electrochemical analysis, this carbon catalyst doped graphite felt (GF) enhances the redox reactivity of vanadium ions. More specifically, peak current density and peak potential separation for redox reaction of vanadium ions are 96.0 and 22.1% more improved than those measured by bare GF, while charge transfer resistance for the redox reactions is also improved by use of the catalyst doped GF. When performance of VRFB using this catalyst doped GF is measured, energy efficiency is 39% more improved than that measured without the catalyst. Based on that, this is revealed that new LDPE-based carbon catalyst is effective for performance improvement of VRFB.

摘要

碳化和活化的低密度聚乙烯(LDPE)被提议用作钒氧化还原液流电池(VRFB)的碳催化剂。这种碳催化剂具有许多表面氧官能团和较大的表面积,而这些优点是通过碳化LDPE的活化实现的。根据电化学分析,这种掺杂在石墨毡(GF)上的碳催化剂提高了钒离子的氧化还原反应活性。更具体地说,钒离子氧化还原反应的峰值电流密度和峰值电位分离比裸GF测量的值分别提高了96.0%和22.1%,同时使用掺杂催化剂的GF也提高了氧化还原反应的电荷转移电阻。当测量使用这种掺杂催化剂的GF的VRFB性能时,能量效率比不使用催化剂时测量的值提高了39%。基于此,表明新型基于LDPE的碳催化剂对VRFB的性能提升是有效的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验