Vijayan R C, Han R, Wu P, Sheth N M, Vagdargi P, Vogt S, Kleinszig G, Osgood G M, Siewerdsen J H, Uneri A
Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD USA.
Department of Computer Science, Johns Hopkins University, Baltimore MD USA.
Proc SPIE Int Soc Opt Eng. 2021 Feb;11598. doi: 10.1117/12.2582188. Epub 2021 Feb 25.
A method and prototype for a fluoroscopically-guided surgical robot is reported for assisting pelvic fracture fixation. The approach extends the compatibility of existing guidance methods with C-arms that are in mainstream use (without prior geometric calibration) using an online calibration of the C-arm geometry automated via registration to patient anatomy. We report the first preclinical studies of this method in cadaver for evaluation of geometric accuracy.
The robot is placed over the patient within the imaging field-of-view and radiographs are acquired as the robot rotates an attached instrument. The radiographs are then used to perform an online geometric calibration via 3D-2D image registration, which solves for the intrinsic and extrinsic parameters of the C-arm imaging system with respect to the patient. The solved projective geometry is then be used to register the robot to the patient and drive the robot to planned trajectories. This method is applied to a robotic system consisting of a drill guide instrument for guidewire placement and evaluated in experiments using a cadaver specimen.
Robotic drill guide alignment to trajectories defined in the cadaver pelvis were accurate within 2 mm and 1° (on average) using the calibration-free approach. Conformance of trajectories within bone corridors was confirmed in cadaver by extrapolating the aligned drill guide trajectory into the cadaver pelvis.
This study demonstrates the accuracy of image-guided robotic positioning without prior calibration of the C-arm gantry, facilitating the use of surgical robots with simpler imaging devices that cannot establish or maintain an offline calibration. Future work includes testing of the system in a clinical setting with trained orthopaedic surgeons and residents.
报告一种用于在荧光透视引导下辅助骨盆骨折固定的手术机器人的方法及原型。该方法通过自动注册到患者解剖结构来在线校准C形臂几何形状,从而扩展了现有引导方法与主流使用的C形臂(无需事先进行几何校准)的兼容性。我们报告了该方法在尸体上进行的首次临床前研究,以评估几何精度。
将机器人放置在患者上方的成像视野内,当机器人旋转连接的器械时获取X射线照片。然后使用这些X射线照片通过3D-2D图像配准进行在线几何校准,从而求解C形臂成像系统相对于患者的内参和外参。然后使用求解出的投影几何将机器人注册到患者身上,并驱动机器人沿着计划的轨迹移动。该方法应用于一个由用于放置导丝的钻孔导向器械组成的机器人系统,并在使用尸体标本的实验中进行评估。
使用无校准方法时,机器人钻孔导向器与尸体骨盆中定义的轨迹的对齐平均在2毫米和1°以内。通过将对齐的钻孔导向轨迹外推到尸体骨盆中,在尸体中确认了骨通道内轨迹的一致性。
本研究证明了在未事先校准C形臂机架的情况下图像引导机器人定位的准确性,便于使用无法进行或维持离线校准的更简单成像设备的手术机器人。未来的工作包括在临床环境中对经过培训的骨科医生和住院医生进行该系统的测试。