Huang Kun, Yang Lan, Gao Yihong, Li Shikuo, Zhang Hui, Huang Fangzhi
School of Chemistry and Chemical Engineering, Anhui University Hefei Anhui 230601 P. R. China
School of Materials Science and Engineering, Anhui University Hefei Anhui 230601 P. R. China
RSC Adv. 2022 Aug 17;12(36):23503-23512. doi: 10.1039/d2ra03627d. eCollection 2022 Aug 16.
For electrocatalytic hydrogen evolution in acidic environments, the stability of catalysts has always been a significant factor restricting development. Here, we prepared a superstable SnO/MoS coupled nanosheet array on carbon cloth (CC@SnO/MoS), exhibiting an overpotential of 166 mV at a current density of 10 mA cm. According to the results of various tests and theoretical calculations, it is shown that the establishment of SnO/MoS interface engineering is to accelerate the electron transmission on the heterogeneous interface and S defects on the edge of MoS, and finally improve the conductivity and catalytic activity of the catalyst. More importantly, the formation of an SnO interface layer during transformation improves the stability and hydrophilicity of the material surface. We have proposed a strategy for engineering an interface with fast electron transport and proton adsorption, providing some new ideas for the design of HER catalysts in acid electrolytes.
对于在酸性环境中的电催化析氢反应,催化剂的稳定性一直是限制其发展的重要因素。在此,我们在碳布上制备了一种超稳定的SnO/MoS耦合纳米片阵列(CC@SnO/MoS),在电流密度为10 mA cm时,其过电位为166 mV。根据各种测试和理论计算结果表明,建立SnO/MoS界面工程可加速异质界面上的电子传输以及MoS边缘的S缺陷,最终提高催化剂的导电性和催化活性。更重要的是,在转化过程中形成的SnO界面层提高了材料表面的稳定性和亲水性。我们提出了一种设计具有快速电子传输和质子吸附功能界面的策略,为酸性电解质中析氢反应催化剂的设计提供了一些新思路。