Suppr超能文献

用于高效析氢的弗伦克尔缺陷单层二硫化钼催化剂

Frenkel-defected monolayer MoS catalysts for efficient hydrogen evolution.

作者信息

Xu Jie, Shao Gonglei, Tang Xuan, Lv Fang, Xiang Haiyan, Jing Changfei, Liu Song, Dai Sheng, Li Yanguang, Luo Jun, Zhou Zhen

机构信息

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, China.

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, China.

出版信息

Nat Commun. 2022 Apr 22;13(1):2193. doi: 10.1038/s41467-022-29929-7.

Abstract

Defect engineering is an effective strategy to improve the activity of two-dimensional molybdenum disulfide base planes toward electrocatalytic hydrogen evolution reaction. Here, we report a Frenkel-defected monolayer MoS catalyst, in which a fraction of Mo atoms in MoS spontaneously leave their places in the lattice, creating vacancies and becoming interstitials by lodging in nearby locations. Unique charge distributions are introduced in the MoS surface planes, and those interstitial Mo atoms are more conducive to H adsorption, thus greatly promoting the HER activity of monolayer MoS base planes. At the current density of 10 mA cm, the optimal Frenkel-defected monolayer MoS exhibits a lower overpotential (164 mV) than either pristine monolayer MoS surface plane (358 mV) or Pt-single-atom doped MoS (211 mV). This work provides insights into the structure-property relationship of point-defected MoS and highlights the advantages of Frenkel defects in tuning the catalytic performance of MoS materials.

摘要

缺陷工程是提高二维二硫化钼基面电催化析氢反应活性的有效策略。在此,我们报道了一种弗伦克尔缺陷单层MoS催化剂,其中MoS中的一部分Mo原子自发地离开其在晶格中的位置,产生空位并通过占据附近位置成为间隙原子。MoS表面平面引入了独特的电荷分布,这些间隙Mo原子更有利于H吸附,从而极大地促进了单层MoS基面的析氢反应活性。在10 mA cm的电流密度下,最优的弗伦克尔缺陷单层MoS表现出比原始单层MoS表面平面(358 mV)或Pt单原子掺杂MoS(211 mV)更低的过电位(164 mV)。这项工作为点缺陷MoS的结构-性能关系提供了见解,并突出了弗伦克尔缺陷在调节MoS材料催化性能方面的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbf5/9033855/ae00926d0736/41467_2022_29929_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验