Lin Xingcheng, George Jason T, Schafer Nicholas P, Chau Kevin Ng, Birnbaum Michael E, Clementi Cecilia, Onuchic José N, Levine Herbert
Center for Theoretical Biological Physics, Rice University, Houston, TX.
Department of Physics and Astronomy, Rice University, Houston, TX.
Nat Comput Sci. 2021 May;1(5):362-373. doi: 10.1038/s43588-021-00076-1. Epub 2021 May 24.
Accurate assessment of TCR-antigen specificity at the whole immune repertoire level lies at the heart of improved cancer immunotherapy, but predictive models capable of high-throughput assessment of TCR-peptide pairs are lacking. Recent advances in deep sequencing and crystallography have enriched the data available for studying TCR-p-MHC systems. Here, we introduce a pairwise energy model, RACER, for rapid assessment of TCR-peptide affinity at the immune repertoire level. RACER applies supervised machine learning to efficiently and accurately resolve strong TCR-peptide binding pairs from weak ones. The trained parameters further enable a physical interpretation of interacting patterns encoded in each specific TCR-p-MHC system. When applied to simulate thymic selection of an MHC-restricted T-cell repertoire, RACER accurately estimates recognition rates for tumor-associated neoantigens and foreign peptides, thus demonstrating its utility in helping address the large computational challenge of reliably identifying the properties of tumor antigen-specific T-cells at the level of an individual patient's immune repertoire.
在整个免疫组库水平上准确评估TCR-抗原特异性是改进癌症免疫治疗的核心,但缺乏能够高通量评估TCR-肽对的预测模型。深度测序和晶体学的最新进展丰富了可用于研究TCR-p-MHC系统的数据。在此,我们引入了一种成对能量模型RACER,用于在免疫组库水平上快速评估TCR-肽亲和力。RACER应用监督式机器学习,以高效、准确地从弱结合对中分辨出强TCR-肽结合对。训练得到的参数还能够对每个特定TCR-p-MHC系统中编码的相互作用模式进行物理解释。当应用于模拟MHC限制的T细胞组库的胸腺选择时,RACER能够准确估计肿瘤相关新抗原和外来肽的识别率,从而证明了其在帮助应对可靠识别个体患者免疫组库水平上肿瘤抗原特异性T细胞特性这一巨大计算挑战方面的实用性。