Suppr超能文献

用于准确预测病毒和肿瘤抗原T细胞特异性的生物物理建模。

Biophysical modeling for accurate T cell specificity prediction of viral and tumor antigens.

作者信息

Ghoreyshi Zahra S, Tubo Noah, Zammataro Luca, Mao Xizeng, Ngai Ho, Wang Duncheng, Chen Yibin, He Qiuming, Cisneros Eduardo, Liang Shoudan, Koppikar Priya J, Lin Xingcheng, Molldrem Jeffrey J, George Jason T

机构信息

Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.

Translational Medical Sciences, Texas A&M University Science Center, Houston, TX, USA.

出版信息

bioRxiv. 2025 May 28:2025.05.25.655924. doi: 10.1101/2025.05.25.655924.

Abstract

Accurate predictions of T cell receptor (TCR) specificity remain an important open problem in immunology, with broad implications for vaccine design, optimal immunotherapy, and improved management of autoimmune diseases. However, diversity in peptide antigens and TCR sequences at the level of individual patient repertoires remains a formidable computational challenge. Here, we develop a joint experimental and computational approach for predicting the antigen specificity of clinically-derived TCR sequences. Our model is trained on a combination of experimentally pre-identified and -predicted TCR-pMHC structures using AlphaFold3. We apply our structural model in the clinical setting of hematopoietic stem cell transplant (HSCT) and demonstrate that our model is able to effectively discern the specificity of previously unseen donor and patient-derived TCR sequences against tumor associated and viral antigens. Model performance was further enhanced through the integration of sequence-based clustering and structurally diverse training templates. Our results highlight the predictive capabilities of structurally guided machine learning frameworks, trained on a minority test dataset, for antigen specificity prediction on unseen TCR sequences and their potential impact on a wide range of immunological applications.

摘要

准确预测T细胞受体(TCR)特异性仍是免疫学中一个重要的未解决问题,对疫苗设计、优化免疫疗法以及改善自身免疫性疾病的管理具有广泛影响。然而,在个体患者库水平上,肽抗原和TCR序列的多样性仍然是一个巨大的计算挑战。在此,我们开发了一种联合实验和计算的方法来预测临床来源的TCR序列的抗原特异性。我们的模型使用AlphaFold3在实验预先鉴定和预测的TCR-pMHC结构的组合上进行训练。我们将我们的结构模型应用于造血干细胞移植(HSCT)的临床环境中,并证明我们的模型能够有效地识别以前未见过的供体和患者来源的TCR序列针对肿瘤相关抗原和病毒抗原的特异性。通过整合基于序列的聚类和结构多样的训练模板,模型性能进一步提高。我们的结果突出了基于结构的机器学习框架在少数测试数据集上训练后,对未见过的TCR序列进行抗原特异性预测的能力及其对广泛免疫应用的潜在影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98f3/12154587/916d47c852a4/nihpp-2025.05.25.655924v1-f0008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验