Shukla Anuj, Bapi Raju S
Cognitive Science Lab, Kohli Centre on Intelligent Systems, International Institute of Information Technology, Hyderabad, Telangana, India.
Thapar School of Liberal Arts and Sciences, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
Front Behav Neurosci. 2022 Aug 24;16:891311. doi: 10.3389/fnbeh.2022.891311. eCollection 2022.
A theory of magnitude (ATOM) suggests that a generalized magnitude system in the brain processes magnitudes such as space, time, and numbers. Numerous behavioral and neurocognitive studies have provided support to ATOM theory. However, the evidence for common magnitude processing primarily comes from the studies in which numerical and temporal information are presented visually. Our current understanding of such cross-dimensional magnitude interactions is limited to visual modality only. However, it is still unclear whether the ATOM-framework accounts for the integration of cross-modal magnitude information. To examine the cross-modal influence of numerical magnitude on temporal processing of the tone, we conducted three experiments using a . We presented the numerical magnitude information in the visual domain and the temporal information in the auditory either simultaneously with duration judgment task (Experiment-1), before duration judgment task (Experiment-2), and before duration judgment task but with numerical magnitude also being task-relevant (Experiment-3). The results suggest that the numerical information presented in the visual domain affects temporal processing of the tone only when the numerical magnitudes were task-relevant and available while making a temporal judgment (Experiments-1 and 3). However, numerical information did not interfere with temporal information when presented temporally separated from the duration information (Experiments-2). The findings indicate that the influence of visual numbers on temporal processing in cross-modal settings may not arise from the common magnitude system but instead from general cognitive mechanisms like attention and memory.
量级理论(ATOM)认为,大脑中的一个广义量级系统处理诸如空间、时间和数字等量级。众多行为和神经认知研究为ATOM理论提供了支持。然而,共同量级处理的证据主要来自于视觉呈现数字和时间信息的研究。我们目前对这种跨维度量级交互的理解仅限于视觉模态。然而,ATOM框架是否能解释跨模态量级信息的整合仍不清楚。为了研究数字量级对音调时间处理的跨模态影响,我们使用了一个[具体内容缺失]进行了三个实验。我们在视觉领域呈现数字量级信息,在听觉领域呈现时间信息,分别在持续时间判断任务期间(实验1)、在持续时间判断任务之前(实验2)以及在持续时间判断任务之前但数字量级也与任务相关时(实验3)。结果表明,只有当数字量级与任务相关且在进行时间判断时可用时,视觉领域呈现的数字信息才会影响音调的时间处理(实验1和3)。然而,当数字信息与持续时间信息在时间上分开呈现时,数字信息不会干扰时间信息(实验2)。研究结果表明,在跨模态环境中,视觉数字对时间处理的影响可能并非源于共同量级系统,而是源于注意力和记忆等一般认知机制。