从分子到基因组变异:通过智能算法和架构加速基因组分析
From molecules to genomic variations: Accelerating genome analysis via intelligent algorithms and architectures.
作者信息
Alser Mohammed, Lindegger Joel, Firtina Can, Almadhoun Nour, Mao Haiyu, Singh Gagandeep, Gomez-Luna Juan, Mutlu Onur
机构信息
ETH Zurich, Gloriastrasse 35, 8092 Zürich, Switzerland.
出版信息
Comput Struct Biotechnol J. 2022 Aug 18;20:4579-4599. doi: 10.1016/j.csbj.2022.08.019. eCollection 2022.
We now need more than ever to make genome analysis more intelligent. We need to read, analyze, and interpret our genomes not only quickly, but also accurately and efficiently enough to scale the analysis to population level. There currently exist major computational bottlenecks and inefficiencies throughout the entire genome analysis pipeline, because state-of-the-art genome sequencing technologies are still not able to read a genome in its entirety. We describe the ongoing journey in significantly improving the performance, accuracy, and efficiency of genome analysis using intelligent algorithms and hardware architectures. We explain state-of-the-art algorithmic methods and hardware-based acceleration approaches for each step of the genome analysis pipeline and provide experimental evaluations. Algorithmic approaches exploit the structure of the genome as well as the structure of the underlying hardware. Hardware-based acceleration approaches exploit specialized microarchitectures or various execution paradigms (e.g., processing inside or near memory) along with algorithmic changes, leading to new hardware/software co-designed systems. We conclude with a foreshadowing of future challenges, benefits, and research directions triggered by the development of both very low cost yet highly error prone new sequencing technologies and specialized hardware chips for genomics. We hope that these efforts and the challenges we discuss provide a foundation for future work in making genome analysis .
现在,我们比以往任何时候都更需要让基因组分析变得更智能。我们不仅需要快速读取、分析和解读我们的基因组,还需要足够准确和高效,以便将分析扩展到群体水平。目前,在整个基因组分析流程中存在重大的计算瓶颈和低效率问题,因为最先进的基因组测序技术仍然无法完整地读取一个基因组。我们描述了利用智能算法和硬件架构显著提高基因组分析性能、准确性和效率的持续进程。我们解释了基因组分析流程每个步骤的最先进算法方法和基于硬件的加速方法,并提供了实验评估。算法方法利用了基因组的结构以及底层硬件的结构。基于硬件的加速方法利用专门的微架构或各种执行范式(例如,在内存内部或附近进行处理)以及算法改进,从而产生新的硬件/软件协同设计系统。我们最后对未来的挑战、益处以及由非常低成本但高度易出错的新测序技术和用于基因组学的专用硬件芯片的发展引发的研究方向进行了展望。我们希望这些努力以及我们讨论的挑战能为未来基因组分析工作奠定基础。
相似文献
Comput Struct Biotechnol J. 2022-8-18
Bioinformatics. 2021-7-27
Bioinformatics. 2017-11-1
IEEE/ACM Trans Comput Biol Bioinform. 2015
Bioinformatics. 2019-11-1
IEEE/ACM Trans Comput Biol Bioinform. 2022
Brief Bioinform. 2009-7
引用本文的文献
Synth Syst Biotechnol. 2025-7-21
Nat Commun. 2025-1-21
Front Genet. 2024-10-28
Bioinformatics. 2024-11-1
Bioinformatics. 2024-6-28
Genome Biol. 2024-2-16
Microorganisms. 2023-11-9
本文引用的文献
IEEE/ACM Trans Comput Biol Bioinform. 2024-8-19
Nat Comput Sci. 2022-2
Proc Asia Pac Bioinform Conf. 2023-4
J Biotechnol Biomed. 2023
Bioinformatics. 2023-2-3
NAR Genom Bioinform. 2023-1-20
Genome Biol. 2022-12-15
BMC Bioinformatics. 2022-12-13
Bioinformatics. 2022-9-30