Ugwu Ambrose, Osman Mogahid, Zaabout Abdelghafour, Amini Shahriar
Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7034 Trondheim, Norway.
Process Technology Department, SINTEF Industry, 7034 Trondheim, Norway.
Energy Fuels. 2022 Sep 1;36(17):9719-9735. doi: 10.1021/acs.energyfuels.2c00620. Epub 2022 Jul 19.
This further investigates the concept of gas switching dry reforming (GSDR) that efficiently converts the two major greenhouse gases (CO and CH) into a valuable product (syngas) for gas-to-liquid (GTL) syntheses. The proposed GSDR is based on chemical looping technology but avoids external circulation of solids (metal oxides) by alternating the supply of reducing and oxidizing gas into a single fluidized bed reactor to achieve redox cycles. Each cycle consists of three steps where a metal oxide/catalyst is first reduced using GTL off-gases to produce CO (and steam) that is supplied to the next reforming step to produce syngas for GTL processes. The metal oxide is then reoxidized in the third step associated with heat generation (through the exothermic oxidation reaction of the metal oxide and air) to provide the heat needed for the endothermic dry methane reforming step. Experimental demonstrations have shown that a syngas H/CO molar ratio between 1 and 2 suitable for methanol production could be achieved. A further demonstration shows that pressure has negative effects on gas conversion. Following the successful experimental campaign, process simulations were completed using ASPEN to show how the GSDR process can be integrated into a methanol (MeOH) production plant.
本文进一步研究了气体切换干重整(GSDR)的概念,该技术可将两种主要温室气体(CO和CH)高效转化为用于气制液(GTL)合成的有价值产品(合成气)。所提出的GSDR基于化学循环技术,但通过在单个流化床反应器中交替供应还原气体和氧化气体来实现氧化还原循环,从而避免了固体(金属氧化物)的外部循环。每个循环包括三个步骤,首先使用GTL尾气还原金属氧化物/催化剂以产生CO(和蒸汽),该CO(和蒸汽)被供应到下一个重整步骤以生产用于GTL工艺的合成气。然后,金属氧化物在与发热相关的第三步中被再氧化(通过金属氧化物与空气的放热氧化反应),以提供吸热的干甲烷重整步骤所需的热量。实验证明,可实现适合甲醇生产的合成气H/CO摩尔比在1至2之间。进一步的演示表明,压力对气体转化有负面影响。在成功进行实验之后,使用ASPEN完成了过程模拟,以展示GSDR工艺如何集成到甲醇(MeOH)生产装置中。