Czajka Adam, Byard Sarah J, Armes Steven P
Dainton Building, The University of Sheffield Brook Hill Sheffield S3 7HF UK
Chem Sci. 2022 Aug 8;13(33):9569-9579. doi: 10.1039/d2sc02103j. eCollection 2022 Aug 24.
A thermoresponsive amphiphilic diblock copolymer that can form spheres, worms or vesicles in aqueous media at neutral pH by simply raising the dispersion temperature from 1 °C (spheres) to 25 °C (worms) to 50 °C (vesicles) is prepared polymerization-induced self-assembly (PISA). Heating such an aqueous copolymer dispersion from 1 °C up to 50 °C in the presence of 19 nm glycerol-functionalized silica nanoparticles enables this remarkable 'shape-shifting' behavior to be exploited as a new post-polymerization encapsulation strategy. The silica-loaded vesicles formed at 50 °C are then crosslinked using a disulfide-based dihydrazide reagent. Such covalent stabilization enables the dispersion to be cooled to room temperature without loss of the vesicle morphology, thus aiding characterization and enabling the loading efficiency to be determined as a function of both copolymer and silica concentration. Small-angle X-ray scattering (SAXS) analysis indicated a mean vesicle membrane thickness of approximately 20 ± 2 nm for the linear vesicles and TEM studies confirmed encapsulation of the silica nanoparticles within these nano-objects. After removal of the non-encapsulated silica nanoparticles multiple centrifugation-redispersion cycles, thermogravimetric analysis indicated that vesicle loading efficiencies of up to 86% can be achieved under optimized conditions. Thermally-triggered release of the silica nanoparticles is achieved by cleaving the disulfide bonds at 50 °C using tris(2-carboxyethyl)phosphine (TCEP), followed by cooling to 20 °C to induce vesicle dissociation. SAXS is also used to confirm the release of silica nanoparticles by monitoring the disappearance of the structure factor peak arising from silica-silica interactions.
通过聚合诱导自组装(PISA)制备了一种热响应性两亲性二嵌段共聚物,该共聚物在中性pH的水性介质中,只需将分散温度从1℃(球形)提高到25℃(蠕虫状)再到50℃(囊泡状),就能形成球形、蠕虫状或囊泡状结构。在19 nm甘油功能化二氧化硅纳米颗粒存在下,将这种共聚物水分散体从1℃加热到50℃,这种显著的“形状转变”行为可被用作一种新的聚合后封装策略。然后,使用基于二硫化物的二酰肼试剂对在50℃形成的负载二氧化硅的囊泡进行交联。这种共价稳定作用使分散体能够冷却至室温而不损失囊泡形态,从而有助于表征并能够确定负载效率与共聚物和二氧化硅浓度的函数关系。小角X射线散射(SAXS)分析表明,线性囊泡的平均囊泡膜厚度约为20±2 nm,透射电子显微镜(TEM)研究证实了二氧化硅纳米颗粒被封装在这些纳米物体中。在通过多次离心-再分散循环去除未封装的二氧化硅纳米颗粒后,热重分析表明,在优化条件下,囊泡负载效率可达86%。通过在50℃使用三(2-羧乙基)膦(TCEP)裂解二硫键,然后冷却至20℃以诱导囊泡解离,实现了二氧化硅纳米颗粒的热触发释放。SAXS还用于通过监测由二氧化硅-二氧化硅相互作用产生的结构因子峰的消失来确认二氧化硅纳米颗粒的释放。