Suppr超能文献

共价化学在蛋白质-蛋白质相互作用抑制剂中的最新应用。

Recent applications of covalent chemistries in protein-protein interaction inhibitors.

作者信息

Chan Alexandria M, Goodis Christopher C, Pommier Elie G, Fletcher Steven

机构信息

University of Maryland School of Pharmacy, Department of Pharmaceutical Sciences 20 N. Pine St Baltimore MD 21201 USA

University of Maryland School of Pharmacy PharmD Program, 20 N. Pine St Baltimore MD 21201 USA.

出版信息

RSC Med Chem. 2022 Jun 3;13(8):921-928. doi: 10.1039/d2md00112h. eCollection 2022 Aug 17.

Abstract

Protein-protein interactions (PPIs) are large, often featureless domains whose modulations by small-molecules are challenging. Whilst there are some notable successes, such as the BCL-2 inhibitor venetoclax, the requirement for larger ligands to achieve the desired level of potency and selectivity may result in poor "drug-like" properties. Covalent chemistry is presently enjoying a renaissance. In particular, targeted covalent inhibition (TCI), in which a weakly electrophilic "warhead" is installed onto a protein ligand scaffold, is a powerful strategy to develop potent inhibitors of PPIs that are smaller/more drug-like yet have enhanced affinities by virtue of the reinforcing effect on the existing non-covalent interactions by the resulting protein-ligand covalent bond. Furthermore, the covalent bond delivers sustained inhibition, which may translate into significantly reduced therapeutic dosing. Herein, we discuss recent applications of a spectrum of TCIs, as well as covalent screening strategies, in the discovery of more effective inhibitors of PPIs using the HDM2 and BCL-2 protein families as case studies.

摘要

蛋白质-蛋白质相互作用(PPIs)是大型的、通常无特征的结构域,小分子对其进行调控具有挑战性。虽然有一些显著的成功案例,如BCL-2抑制剂维奈托克,但需要更大的配体来达到所需的效力和选择性水平,这可能导致不良的“类药”性质。共价化学目前正在复兴。特别是靶向共价抑制(TCI),即在蛋白质配体支架上安装一个弱亲电的“弹头”,是开发PPIs有效抑制剂的有力策略,这些抑制剂更小/更具类药性质,但由于蛋白质-配体共价键对现有非共价相互作用的增强作用而具有更高的亲和力。此外,共价键提供持续抑制,这可能转化为显著降低治疗剂量。在此,我们以HDM2和BCL-2蛋白家族为案例研究,讨论一系列TCI以及共价筛选策略在发现更有效的PPIs抑制剂方面的最新应用。

相似文献

1
Recent applications of covalent chemistries in protein-protein interaction inhibitors.
RSC Med Chem. 2022 Jun 3;13(8):921-928. doi: 10.1039/d2md00112h. eCollection 2022 Aug 17.
2
Electrophilic warheads in covalent drug discovery: an overview.
Expert Opin Drug Discov. 2022 Apr;17(4):413-422. doi: 10.1080/17460441.2022.2034783. Epub 2022 Feb 6.
3
Modeling the Binding and Conformational Energetics of a Targeted Covalent Inhibitor to Bruton's Tyrosine Kinase.
J Chem Inf Model. 2021 Oct 25;61(10):5234-5242. doi: 10.1021/acs.jcim.1c00897. Epub 2021 Sep 30.
5
Recent progress in covalent warheads for in vivo targeting of endogenous proteins.
Bioorg Med Chem. 2021 Oct 1;47:116386. doi: 10.1016/j.bmc.2021.116386. Epub 2021 Aug 27.
6
Peptide-Based Covalent Inhibitors Bearing Mild Electrophiles to Target a Conserved His Residue of the Bacterial Sliding Clamp.
JACS Au. 2024 Jan 25;4(2):432-440. doi: 10.1021/jacsau.3c00572. eCollection 2024 Feb 26.
7
CovPDB: a high-resolution coverage of the covalent protein-ligand interactome.
Nucleic Acids Res. 2022 Jan 7;50(D1):D445-D450. doi: 10.1093/nar/gkab868.
8
Discovery of electrophilic degraders that exploit SAr chemistry.
bioRxiv. 2024 Sep 27:2024.09.25.615094. doi: 10.1101/2024.09.25.615094.
9
A road map for prioritizing warheads for cysteine targeting covalent inhibitors.
Eur J Med Chem. 2018 Dec 5;160:94-107. doi: 10.1016/j.ejmech.2018.10.010. Epub 2018 Oct 6.
10
Orally effective FDA-approved protein kinase targeted covalent inhibitors (TCIs).
Pharmacol Res. 2021 Mar;165:105422. doi: 10.1016/j.phrs.2021.105422. Epub 2021 Jan 9.

引用本文的文献

1
Advances in Cellular and Molecular Biology Assays: A Review of Gold Standard Methods.
Int J Innov Sci Res Technol. 2025 Mar;10(3):3307-3319. doi: 10.38124/ijisrt/25mar736. Epub 2025 Apr 29.
3
Deep learning-based discovery of compounds for blood pressure lowering effects.
Sci Rep. 2025 Jan 2;15(1):54. doi: 10.1038/s41598-024-83924-0.
5
Computational completion of the Aurora interaction region of N-Myc in the Aurora a kinase complex.
Sci Rep. 2023 Oct 26;13(1):18399. doi: 10.1038/s41598-023-45272-3.
6
Molecular Peptide Grafting as a Tool to Create Novel Protein Therapeutics.
Molecules. 2023 Mar 5;28(5):2383. doi: 10.3390/molecules28052383.

本文引用的文献

1
The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs.
Nat Rev Cancer. 2022 Jan;22(1):45-64. doi: 10.1038/s41568-021-00407-4. Epub 2021 Oct 18.
2
Reversible Covalent Imine-Tethering for Selective Stabilization of 14-3-3 Hub Protein Interactions.
J Am Chem Soc. 2021 Jun 9;143(22):8454-8464. doi: 10.1021/jacs.1c03035. Epub 2021 May 28.
3
Inhibitors of BCL2A1/Bfl-1 protein: Potential stock in cancer therapy.
Eur J Med Chem. 2021 Aug 5;220:113539. doi: 10.1016/j.ejmech.2021.113539. Epub 2021 May 14.
4
Targeting MCL-1 in cancer: current status and perspectives.
J Hematol Oncol. 2021 Apr 21;14(1):67. doi: 10.1186/s13045-021-01079-1.
6
Development of Mcl-1 inhibitors for cancer therapy.
Eur J Med Chem. 2021 Jan 15;210:113038. doi: 10.1016/j.ejmech.2020.113038. Epub 2020 Nov 24.
7
MCL-1 inhibitors, fast-lane development of a new class of anti-cancer agents.
J Hematol Oncol. 2020 Dec 11;13(1):173. doi: 10.1186/s13045-020-01007-9.
8
Targeting Bfl-1 via acute CDK9 inhibition overcomes intrinsic BH3-mimetic resistance in lymphomas.
Blood. 2021 May 27;137(21):2947-2957. doi: 10.1182/blood.2020008528.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验