Suppr超能文献

通过铝掺杂和原位氧化铝涂层增强LiCoO薄膜电极的界面动力学和高倍率性能

Enhanced Interfacial Kinetics and High Rate Performance of LiCoO Thin-Film Electrodes by Al Doping and In Situ AlO Coating.

作者信息

Xiao Bo, Tang Qianchang, Dai Xinyi, Wu Fuzhong, Chen Haijun, Li Jingze, Mai Yi, Gu Yijing

机构信息

Guizhou Province Characteristic Key Laboratory of High Performance Battery Materials, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.

Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313002, China.

出版信息

ACS Omega. 2022 Aug 24;7(35):31597-31606. doi: 10.1021/acsomega.2c04665. eCollection 2022 Sep 6.

Abstract

The structure and surface-interface instability of LiCoO thin-film electrodes during charge-discharge cycles are one of the main factors leading to the deterioration of electrochemical performance. Element doping and surface coating are effective strategies to tackle this issue. In this work, Al-doped and in situ AlO-coated LiCoO composite thin-film electrodes are prepared by magnetron sputtering. The results show that the resultant composite thin-film electrodes exhibited excellent cycling stability, with a discharge specific capacity of 40.2 μAh um cm after 240 cycles at 2.5 μA cm, with a capacity retention rate of 94.14%, compared to a discharge capacity of the unmodified sample of only 37.7 μAh um cm after 110 cycles, with a capacity retention rate of 80.04%. In addition, the rate performance of the prepared LiCoO film is significantly improved, and the discharge specific capacity of the Al-doped sample reaches 43.5 μAh um cm at 100 μA cm, which is 38.97% higher than that of the unmodified sample (31.3 μAh um cm). The enhancement of electrochemical performance is mainly attributed to the synergistic effect of Al doping and in situ AlO coating. The metal Al forms a conductive network in the film, while part of the Al will enter the LiCoO lattice to form a LiAl Co O solid solution, promoting the transport of lithium ions and improving the stability of the electrode structure. The in situ continuous deposition of the coating optimizes the active material coating-electrolyte interface.

摘要

LiCoO薄膜电极在充放电循环过程中的结构和表面-界面不稳定性是导致其电化学性能恶化的主要因素之一。元素掺杂和表面包覆是解决这一问题的有效策略。在本工作中,通过磁控溅射制备了Al掺杂和原位AlO包覆的LiCoO复合薄膜电极。结果表明,所得复合薄膜电极表现出优异的循环稳定性,在2.5 μA cm²的电流密度下循环240次后,放电比容量为40.2 μAh/μm²·cm²,容量保持率为94.14%;相比之下,未改性样品在110次循环后的放电容量仅为37.7 μAh/μm²·cm²,容量保持率为80.04%。此外,所制备的LiCoO薄膜的倍率性能也得到显著改善,Al掺杂样品在100 μA cm²的电流密度下放电比容量达到43.5 μAh/μm²·cm²,比未改性样品(31.3 μAh/μm²·cm²)高出38.97%。电化学性能的提升主要归因于Al掺杂和原位AlO包覆的协同效应。金属Al在薄膜中形成导电网络,同时部分Al会进入LiCoO晶格形成LiAlₓCo₁₋ₓO固溶体,促进锂离子传输并提高电极结构的稳定性。原位连续沉积的包覆层优化了活性材料-包覆层-电解质界面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43d0/9453800/e0c57b51bddd/ao2c04665_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验