Ai Fei, Wang Jike
The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
ACS Omega. 2022 Aug 24;7(35):31309-31317. doi: 10.1021/acsomega.2c03588. eCollection 2022 Sep 6.
The electrochemical reaction can be applied as a powerful method to eliminate the pollution of nitrate (NO ) and as a feasible synthesis to enable the conversion of nitrate into ammonia (NH) at room temperature. Herein, density functional theory calculations are applied to comprehensively analyze the electrochemical nitrate reduction reaction (NORR) on graphdiyne-supported transition metal single-atom catalysts (TM@GDY SACs) for the first time. It can be found that the vanadium-anchored graphdiyne (V@GDY) displays the lowest limiting potential of -0.63 V versus a reversible hydrogen electrode among the investigated systems in this work. Notably, the competing hydrogen evolution reaction is relatively restrained due to the comparatively weak adsorption of the H proton on the TM@GDY SACs. Moreover, higher energy intake is needed to overcome the energy barrier during the formation of byproducts (NO, NO, NO, and N) on V@GDY without applying extra electrode potential, showing the selectivity of NH in the NORR process. The ab initio molecular dynamics simulation denotes that the V@GDY possesses excellent structure stability at the temperature of 600 K without much distortion, compared with the initial shape, indicating the promise for synthesis. This study not only offers a feasible NORR electrocatalyst but also paves the way for the development of the NORR process.
电化学反应可作为一种强大的方法来消除硝酸盐(NO)污染,并且作为一种可行的合成方法能够在室温下将硝酸盐转化为氨(NH)。在此,首次应用密度泛函理论计算全面分析了石墨炔负载的过渡金属单原子催化剂(TM@GDY SACs)上的电化学硝酸盐还原反应(NORR)。研究发现,在本工作所研究的体系中,钒锚定的石墨炔(V@GDY)相对于可逆氢电极显示出最低的极限电位-0.63 V。值得注意的是,由于H质子在TM@GDY SACs上的吸附相对较弱,析氢竞争反应受到相对抑制。此外,在不施加额外电极电位的情况下,在V@GDY上形成副产物(NO、NO、NO和N)的过程中需要更高的能量摄入来克服能垒,这表明在NORR过程中对NH具有选择性。从头算分子动力学模拟表明,与初始形状相比,V@GDY在600 K温度下具有优异的结构稳定性,几乎没有变形,这表明其合成前景良好。本研究不仅提供了一种可行的NORR电催化剂,也为NORR过程的发展铺平了道路。