Suppr超能文献

压力下的概念密度泛函理论:第一部分。应用于原子的XP-PCM方法。

Conceptual density functional theory under pressure: Part I. XP-PCM method applied to atoms.

作者信息

Eeckhoudt J, Bettens T, Geerlings P, Cammi R, Chen B, Alonso M, De Proft F

机构信息

General Chemistry Department (ALGC), Vrije Universiteit Brussel (VUB) Brussels Belgium

Department of Chemical Science, Life Science and Environmental Sustainability, University of Parma Parma Italy.

出版信息

Chem Sci. 2022 Jul 15;13(32):9329-9350. doi: 10.1039/d2sc00641c. eCollection 2022 Aug 17.

Abstract

High pressure chemistry offers the chemical community a range of possibilities to control chemical reactivity, develop new materials and fine-tune chemical properties. Despite the large changes that extreme pressure brings to the table, the field has mainly been restricted to the effects of volume changes and thermodynamics with less attention devoted to electronic effects at the molecular scale. This paper combines the conceptual DFT framework for analyzing chemical reactivity with the XP-PCM method for simulating pressures in the GPa range. Starting from the new derivatives of the energy with respect to external pressure, an electronic atomic volume and an atomic compressibility are found, comparable to their enthalpy analogues, respectively. The corresponding radii correlate well with major known sets of this quantity. The ionization potential and electron affinity are both found to decrease with pressure using two different methods. For the electronegativity and chemical hardness, a decreasing and increasing trend is obtained, respectively, and an electronic volume-based argument is proposed to rationalize the observed periodic trends. The cube of the softness is found to correlate well with the polarizability, both decreasing under pressure, while the interpretation of the electrophilicity becomes ambiguous at extreme pressures. Regarding the electron density, the radial distribution function shows a clear concentration of the electron density towards the inner region of the atom and periodic trends can be found in the density using the Carbó quantum similarity index and the Kullback-Leibler information deficiency. Overall, the extension of the CDFT framework with pressure yields clear periodic patterns.

摘要

高压化学为化学界提供了一系列控制化学反应性、开发新材料和微调化学性质的可能性。尽管极端压力带来了巨大变化,但该领域主要局限于体积变化和热力学的影响,而在分子尺度上对电子效应的关注较少。本文将用于分析化学反应性的概念性密度泛函理论(DFT)框架与用于模拟吉帕(GPa)范围内压力的极化连续介质模型(XP-PCM)方法相结合。从能量相对于外部压力的新导数出发,分别找到了与它们的焓类似物相当的电子原子体积和原子压缩性。相应的半径与该量的主要已知数据集相关性良好。使用两种不同的方法发现电离势和电子亲和势均随压力降低。对于电负性和化学硬度,分别得到了下降和上升的趋势,并提出了基于电子体积的论据来合理化观察到的周期性趋势。发现软度的立方与极化率相关性良好,两者在压力下均降低,而在极端压力下亲电性的解释变得模糊。关于电子密度,径向分布函数显示电子密度明显集中在原子的内部区域,并且使用卡尔沃量子相似性指数和库尔贝克-莱布勒信息不足可以在密度中发现周期性趋势。总体而言,用压力扩展概念性密度泛函理论(CDFT)框架产生了清晰的周期性模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc92/9384819/8e776adc0a3a/d2sc00641c-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验