Suppr超能文献

PRG-1通过NSF/谷氨酸/谷氨酸受体2信号通路预防新生儿刺激诱导的持续性痛觉过敏和记忆功能障碍。

PRG-1 prevents neonatal stimuli-induced persistent hyperalgesia and memory dysfunction via NSF/Glu/GluR2 signaling.

作者信息

Liu Xingfeng, Li Site, Zhang Wenyu, Xie Zhuo, He Jingxin, Zhang Xuanwei, Yu Shouyang, Cao Song, Yu Tian, Xiao Zhi

机构信息

Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Xuefu West Road 6, Xinpu District, Zunyi 563000, China.

Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Xuefu West Road 6, Xinpu District, Zunyi 563000, China.

出版信息

iScience. 2022 Aug 24;25(9):104989. doi: 10.1016/j.isci.2022.104989. eCollection 2022 Sep 16.

Abstract

Neonatal repetitive noxious stimuli (RNS) has been shown to cause long-term harmful effects on nociceptive processing, learning, and memory which persist until adulthood. Plasticity-related gene 1 (PRG-1) regulates synaptic plasticity and functional reorganization in the brain during neuronal development. In this study, neonatal RNS rats were established by repetitive needle pricks to neonatal rats on all four feet to model repetitive pain exposure in infants. Neonatal RNS caused thermal hyperalgesia, mechanical allodynia, learning, and memory impairments which manifested in young rats and persisted until adulthood. Hippocampal PRG-1/N-ethylmaleimide sensitive fusion protein (NSF) interaction was determined to be responsible for the RNS-induced impairment via enhanced extracellular glutamate release and AMPAR GluR2 trafficking deficiency in a cell-autonomous manner. These pathways likely act synergistically to cause changes in dendritic spine density. Our findings suggest that PRG-1 prevents the RNS-induced hyperalgesia, learning, and memory impairment by regulating synaptic plasticity via NSF/Glu/GluR2 signaling.

摘要

新生儿重复性伤害性刺激(RNS)已被证明会对伤害性感受处理、学习和记忆造成长期有害影响,且这些影响会持续至成年期。可塑性相关基因1(PRG-1)在神经元发育过程中调节大脑中的突触可塑性和功能重组。在本研究中,通过对新生大鼠的四只脚进行重复针刺来建立新生RNS大鼠模型,以模拟婴儿反复暴露于疼痛的情况。新生RNS导致热痛觉过敏、机械性异常性疼痛、学习和记忆障碍,这些症状在幼鼠中出现并持续至成年期。研究确定海马体中PRG-1/ N-乙基马来酰亚胺敏感融合蛋白(NSF)的相互作用通过增强细胞外谷氨酸释放和以细胞自主方式导致α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体(AMPAR)GluR2转运缺陷,从而导致RNS诱导的损伤。这些途径可能协同作用,导致树突棘密度发生变化。我们的研究结果表明,PRG-1通过NSF/谷氨酸/谷氨酸受体2(GluR2)信号通路调节突触可塑性,从而预防RNS诱导的痛觉过敏、学习和记忆障碍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d634/9460187/6bc12eb1b614/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验