Venturoli G, Virgili M, Melandri B A, Crofts A R
FEBS Lett. 1987 Jul 27;219(2):477-84. doi: 10.1016/0014-5793(87)80276-4.
A quantitative study of the kinetics of electron transfer under coupled conditions in photosynthetic bacteria has so far been prevented by overlap of the electrochromic signals of carotenoids and bacteriochlorophyll with the absorbance changes of cytochromes and reaction centers. In this paper a method is presented by which the electrochromic contribution at any wavelength can be calculated from the electrochromic signal recorded at 505 nm, using a set of empirically determined polynomial functions. The electrochromic contribution to kinetic changes at any wavelength can then be subtracted to leave the true kinetics of the redox changes. The corrected redox changes of the reaction center measured at 542 and 605 nm mutually agree, thus providing an excellent test of self-consistency of the method. The corrected traces for reaction center and of cytochrome b-566 demonstrate large effects of the membrane potential on the rate and poise of electron transfer. It will be possible to study the interrelation between proton gradient and individual electron reactions under flash or steady-state illumination.