Suppr超能文献

荚膜红假单胞菌载色体光合电子流过程中膜电位的产生

Generation of membrane potential during photosynthetic electron flow in chromatophores from Rhodopseudomonas capsulata.

作者信息

Packham N K, Greenrod J A, Jackson J B

出版信息

Biochim Biophys Acta. 1980 Aug 5;592(1):130-42. doi: 10.1016/0005-2728(80)90120-6.

Abstract
  1. When cytochrome c2 is available for oxidation by the photosynthetic reaction centre, the decay of the carotenoid absorption band shift generated by a short flash excitation of Rhodopseudomonas capsulata chromatophores is very slow (half-time approximately 10 s). Otherwise the decay is fast (half-time approximately 1 s in the absence and 0.05 s in the presence of 1,10-ortho-phenanthroline) and coincides with the photosynthetic back reaction. 2. In each of these situations the carotenoid shift decay, but not electron transport, may be accelerated by ioniophores. The ionophore concentration dependence suggests that in each case the carotenoid response is due to a delocalised membrane potential which may be dissipated either by the electronic back reaction or by electrophoretic ion flux. 3. At high redox potentials, where cytochrome c2 is unavailable for photooxidation, electron transport is believed to proceed only across part of the membrane dielectric. Under such conditions it is shown that the driving force for carbonyl cyanide trifluoromethoxyphenyl hydrazone-mediated H+ efflux is nevertheless decreased by valinomycin/K+; demonstrating that the [BChl]2 leads to Q electron transfer generates a delocalised membrane potential.
摘要
  1. 当细胞色素c2可被光合反应中心氧化时,荚膜红假单胞菌载色体经短闪光激发产生的类胡萝卜素吸收带位移的衰减非常缓慢(半衰期约为10秒)。否则,衰减很快(在不存在1,10 - 邻菲罗啉时半衰期约为1秒,在存在1,10 - 邻菲罗啉时半衰期为0.05秒),且与光合逆反应一致。2. 在上述每种情况下,离子载体均可加速类胡萝卜素位移的衰减,但不影响电子传递。离子载体浓度依赖性表明,在每种情况下,类胡萝卜素的响应是由于一种离域膜电位,该电位可通过电子逆反应或电泳离子通量消散。3. 在高氧化还原电位下,细胞色素c2无法进行光氧化,据信电子传递仅在膜电介质的一部分上进行。在这种条件下,研究表明,羰基氰化物三氟甲氧基苯基腙介导的H⁺外流驱动力仍会因缬氨霉素/K⁺而降低;这表明[细菌叶绿素]₂导致的Q电子传递产生了离域膜电位。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验