Suppr超能文献

基于人工神经网络的人类细胞检测与分析。

Detection and Analysis of Human Cells Based on Artificial Neural Network.

机构信息

College of Computer Information and Engineering, Nanchang Institute of Technology, Nanchang 330044, China.

出版信息

Comput Intell Neurosci. 2022 Aug 31;2022:4600840. doi: 10.1155/2022/4600840. eCollection 2022.

Abstract

The detection and classification of histopathological cell images is a hot topic in current research. Medical images are an important research direction and are widely used in computer-aided diagnosis, biological research, and other fields. A neural network model based on deep learning is also common in medical image analysis and automatic detection and classification of tissue and cell images. Current medical cell detection methods generally do not consider that the yield is affected by other factors in the topological region, which leads to inevitable errors in the accuracy and generalization of the algorithm; at the same time, the current medical cell imaging methods are too simple to predict the classification markers, which affect the accuracy of cell image classification. This study introduces the concepts of two kinds of neural networks and then constructs a cell recognition model based on the convolution neural network principle and staining principle. In the experimental part, we developed three groups of experiments using the same equation as the experiment and tested the best cell recognition model proposed in this study.

摘要

组织细胞图像的检测和分类是当前研究的热点。医学图像是一个重要的研究方向,广泛应用于计算机辅助诊断、生物研究等领域。基于深度学习的神经网络模型在医学图像分析和组织及细胞图像的自动检测和分类中也很常见。目前的医学细胞检测方法通常没有考虑到在拓扑区域中其他因素对产量的影响,这导致算法的准确性和泛化性不可避免地出现误差;同时,目前的医学细胞成像方法过于简单,无法预测分类标记物,影响了细胞图像分类的准确性。本研究介绍了两种神经网络的概念,然后基于卷积神经网络原理和染色原理构建了细胞识别模型。在实验部分,我们使用相同的方程进行了三组实验,测试了本研究提出的最佳细胞识别模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98fd/9452942/f3e064159f2a/CIN2022-4600840.001.jpg

相似文献

1
Detection and Analysis of Human Cells Based on Artificial Neural Network.
Comput Intell Neurosci. 2022 Aug 31;2022:4600840. doi: 10.1155/2022/4600840. eCollection 2022.
2
[Medical computer-aided detection method based on deep learning].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2018 Jun 25;35(3):368-375. doi: 10.7507/1001-5515.201611064.
3
Medical image diagnosis of prostate tumor based on PSP-Net+VGG16 deep learning network.
Comput Methods Programs Biomed. 2022 Jun;221:106770. doi: 10.1016/j.cmpb.2022.106770. Epub 2022 Mar 23.
4
Deep Convolution Neural Network for Malignancy Detection and Classification in Microscopic Uterine Cervix Cell Images.
Asian Pac J Cancer Prev. 2019 Nov 1;20(11):3447-3456. doi: 10.31557/APJCP.2019.20.11.3447.
5
White blood cells detection and classification based on regional convolutional neural networks.
Med Hypotheses. 2020 Feb;135:109472. doi: 10.1016/j.mehy.2019.109472. Epub 2019 Nov 4.
6
Application of convolution neural network in medical image processing.
Technol Health Care. 2021;29(2):407-417. doi: 10.3233/THC-202657.
7
Developing a Recognition System for Diagnosing Melanoma Skin Lesions Using Artificial Intelligence Algorithms.
Comput Math Methods Med. 2021 May 15;2021:9998379. doi: 10.1155/2021/9998379. eCollection 2021.
8
Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm.
J Cancer Res Clin Oncol. 2019 Apr;145(4):829-837. doi: 10.1007/s00432-018-02834-7. Epub 2019 Jan 3.
9
BCHisto-Net: Breast histopathological image classification by global and local feature aggregation.
Artif Intell Med. 2021 Nov;121:102191. doi: 10.1016/j.artmed.2021.102191. Epub 2021 Oct 12.
10
Research and Application of Ancient Chinese Pattern Restoration Based on Deep Convolutional Neural Network.
Comput Intell Neurosci. 2021 Dec 10;2021:2691346. doi: 10.1155/2021/2691346. eCollection 2021.

本文引用的文献

6
Circulating tumour cell detection on its way to routine diagnostic implementation?
Eur J Cancer. 2007 Dec;43(18):2645-50. doi: 10.1016/j.ejca.2007.09.016. Epub 2007 Oct 30.
7
Cell detection and counting through cell lysate impedance spectroscopy in microfluidic devices.
Lab Chip. 2007 Jun;7(6):746-55. doi: 10.1039/b705082h. Epub 2007 May 11.
8
Comparison of support vector machine and artificial neural network systems for drug/nondrug classification.
J Chem Inf Comput Sci. 2003 Nov-Dec;43(6):1882-9. doi: 10.1021/ci0341161.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验