Department of Biochemistry, University of Colorado, Boulder, Colorado, USA.
Department of Biochemistry, University of Colorado, Boulder, Colorado, USA.
J Biol Chem. 2024 Mar;300(3):105730. doi: 10.1016/j.jbc.2024.105730. Epub 2024 Feb 8.
Riboswitches are broadly distributed regulatory elements most frequently found in the 5'-leader sequence of bacterial mRNAs that regulate gene expression in response to the binding of a small molecule effector. The occupancy status of the ligand-binding aptamer domain manipulates downstream information in the message that instructs the expression machinery. Currently, there are over 55 validated riboswitch classes, where each class is defined based on the identity of the ligand it binds and/or sequence and structure conservation patterns within the aptamer domain. This classification reflects an "aptamer-centric" perspective that dominates our understanding of riboswitches. In this review, we propose a conceptual framework that groups riboswitches based on the mechanism by which RNA manipulates information directly instructing the expression machinery. This scheme does not replace the established aptamer domain-based classification of riboswitches but rather serves to facilitate hypothesis-driven investigation of riboswitch regulatory mechanisms. Based on current bioinformatic, structural, and biochemical studies of a broad spectrum of riboswitches, we propose three major mechanistic groups: (1) "direct occlusion", (2) "interdomain docking", and (3) "strand exchange". We discuss the defining features of each group, present representative examples of riboswitches from each group, and illustrate how these RNAs couple small molecule binding to gene regulation. While mechanistic studies of the occlusion and docking groups have yielded compelling models for how these riboswitches function, much less is known about strand exchange processes. To conclude, we outline the limitations of our mechanism-based conceptual framework and discuss how critical information within riboswitch expression platforms can inform gene regulation.
核糖开关是广泛分布的调控元件,最常见于细菌 mRNA 的 5' 前导序列中,能够响应小分子效应物的结合来调节基因表达。配体结合适体结构域的占据状态会操纵信息下游,从而指导表达机制。目前已经有超过 55 种经过验证的核糖开关类别,其中每种类别都是基于它所结合的配体的身份以及/或者适体结构域内的序列和结构保守模式来定义的。这种分类反映了一种以“适体为中心”的观点,主导着我们对核糖开关的理解。在这篇综述中,我们提出了一个概念框架,根据 RNA 直接操纵信息以直接指导表达机制的机制来对核糖开关进行分组。该方案不会取代基于已建立的适体结构域的核糖开关分类,而是有助于假设驱动的核糖开关调控机制的研究。基于对广泛的核糖开关的生物信息学、结构和生化研究,我们提出了三个主要的机制组:(1)“直接封闭”,(2)“域间对接”,和(3)“链交换”。我们讨论了每组的定义特征,介绍了每组的代表性核糖开关示例,并说明了这些 RNA 如何将小分子结合与基因调控联系起来。虽然对封闭和对接组的机制研究已经为这些核糖开关的功能提供了令人信服的模型,但对于链交换过程的了解要少得多。最后,我们概述了我们基于机制的概念框架的局限性,并讨论了核糖开关表达平台内的关键信息如何为基因调控提供信息。