Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC - SSB3, Los Angeles, California, USA.
mSphere. 2022 Oct 26;7(5):e0038222. doi: 10.1128/msphere.00382-22. Epub 2022 Sep 12.
Over the past 70 years, multiple approaches to develop a prophylactic or therapeutic vaccine to control herpes simplex virus (HSV) infection have failed to protect against primary infection, reactivation, or reinfection. In contrast to many RNA viruses, neither primary HSV infection nor repeated clinical recurrence elicits immune responses capable of completely preventing virus reactivation; yet the 12 known HSV-1 glycoproteins are the major inducers and targets of humoral and cell-mediated immune responses following infection. While costimulatory molecules and CD4/CD8 T cells both contribute significantly to HSV-1-induced immune responses, the specific effects of individual HSV-1 glycoproteins on CD4, CD8, CD80, and CD86 activities are not known. To determine how nine major HSV-1 glycoproteins affect T cells and costimulatory molecule function, we tested the independent effects of gB, gC, gD, gE, gG, gH, gI, gK, and gL on CD4, CD8, CD80, and CD86 promoter activities . gD, gK, and gL had a suppressive effect on CD4, CD8, CD80, and CD86 promoter activities, while gG and gH specifically suppressed CD4 promoter activity. In contrast, gB, gC, gE, and gI stimulated CD4, CD8, CD80, and CD86 promoter activities. Luminex analysis of splenocytes and bone-marrow-derived dendritic cells (BMDCs) transfected with each glycoprotein showed differing cytokine/chemokine milieus with higher responses in splenocytes than in BMDCs. Our results with the tested major HSV-1 glycoproteins suggest that costimulatory molecules and T cell responses to the nine glycoproteins can be divided into (i) stimulators (i.e., gB, gC, gE, and gI), and (ii) nonstimulators (i.e., gD, gK, and gL). Thus, consistent with our previous studies, a cocktail of select HSV-1 viral genes may induce a wider spectrum of immune responses, and thus protection, than individual genes. Currently no effective vaccine is available against herpes simplex virus (HSV) infection. Thus, there is a critical need to develop a safe and effective vaccine to prevent and control HSV infection. The development of such approaches will require an advanced understanding of viral genes. This study provides new evidence supporting an approach to maximize vaccine efficacy by using a combination of HSV genes to control HSV infection.
在过去的 70 年中,有多种方法试图开发预防或治疗单纯疱疹病毒 (HSV) 感染的疫苗,但都未能防止原发感染、再激活或再感染。与许多 RNA 病毒不同,原发 HSV 感染或反复临床复发均不能引发完全阻止病毒再激活的免疫反应;然而,12 种已知的 HSV-1 糖蛋白是感染后体液和细胞免疫反应的主要诱导物和靶标。虽然共刺激分子和 CD4/CD8 T 细胞都对 HSV-1 诱导的免疫反应有重要贡献,但单个 HSV-1 糖蛋白对 CD4、CD8、CD80 和 CD86 活性的具体影响尚不清楚。为了确定 9 种主要的 HSV-1 糖蛋白如何影响 T 细胞和共刺激分子的功能,我们测试了 gB、gC、gD、gE、gG、gH、gI、gK 和 gL 对 CD4、CD8、CD80 和 CD86 启动子活性的独立影响。gD、gK 和 gL 对 CD4、CD8、CD80 和 CD86 启动子活性有抑制作用,而 gG 和 gH 特异性抑制 CD4 启动子活性。相比之下,gB、gC、gE 和 gI 刺激了 CD4、CD8、CD80 和 CD86 启动子活性。用每种糖蛋白转染的脾细胞和骨髓来源的树突状细胞 (BMDC) 的 Luminex 分析显示,细胞因子/趋化因子环境不同,脾细胞中的反应高于 BMDC。我们用测试的主要 HSV-1 糖蛋白进行的研究结果表明,共刺激分子和 T 细胞对 9 种糖蛋白的反应可以分为 (i) 刺激剂(即 gB、gC、gE 和 gI)和 (ii) 非刺激剂(即 gD、gK 和 gL)。因此,与我们之前的研究一致,选择的 HSV-1 病毒基因的鸡尾酒可能会诱导更广泛的免疫反应,从而比单个基因提供更好的保护。目前尚无针对单纯疱疹病毒 (HSV) 感染的有效疫苗。因此,迫切需要开发安全有效的疫苗来预防和控制 HSV 感染。此类方法的发展需要深入了解病毒基因。本研究提供了新的证据,支持通过使用 HSV 基因组合来控制 HSV 感染以最大限度地提高疫苗效力的方法。