School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China.
Department of Biological Sciences, Department of Chemistry, Department of Bioengineering, and Department of Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States.
J Chem Inf Model. 2021 Feb 22;61(2):831-839. doi: 10.1021/acs.jcim.0c01360. Epub 2021 Jan 14.
Hydrogen mass repartitioning (HMR) that permits time steps of all-atom molecular dynamics simulation up to 4 fs by increasing the mass of hydrogen atoms has been used in protein and phospholipid bilayers simulations to improve conformational sampling. Molecular simulation input generation via CHARMM-GUI now supports HMR for diverse simulation programs. In addition, considering ambiguous pH at the bacterial outer membrane surface, different protonation states, either -2e or -1e, of phosphate groups in lipopolysaccharides (LPS) are also supported in CHARMM-GUI . To examine the robustness of HMR and the influence of protonation states of phosphate groups on LPS bilayer properties, eight different LPS-type all-atom systems with two phosphate protonation states are modeled and simulated utilizing both OpenMM 2-fs (standard) and 4-fs (HMR) schemes. Consistency in the conformational space sampled by standard and HMR simulations shows the reliability of HMR even in LPS, one of the most complex biomolecules. For systems with different protonation states, similar conformations are sampled with a PO or PO group, but different phosphate protonation states make slight impacts on lipid packing and conformational properties of LPS acyl chains. Systems with PO have a slightly smaller area per lipid and thus slightly more ordered lipid A acyl chains compared to those with PO, due to more electrostatic repulsion between PO even with neutralizing Ca ions. HMR and different protonation states of phosphates of LPS available in CHARMM-GUI are expected to be useful for further investigations of biological systems of diverse origin.
通过增加氢原子的质量来实现氢质量再分配(HMR),从而允许全原子分子动力学模拟的时间步长达到 4fs,这已被用于蛋白质和磷脂双层模拟中,以改善构象采样。CHARMM-GUI 现在支持通过分子模拟输入生成器为各种模拟程序提供 HMR。此外,考虑到细菌外膜表面的 pH 值存在不确定性,CHARMM-GUI 还支持脂多糖(LPS)中磷酸基团的两种不同质子化状态,-2e 或-1e。为了检验 HMR 的稳健性以及磷酸基团质子化状态对 LPS 双层性质的影响,利用 OpenMM 2-fs(标准)和 4-fs(HMR)方案,对具有两种磷酸质子化状态的 8 种不同 LPS 全原子系统进行了建模和模拟。标准和 HMR 模拟在构象空间中采样的一致性表明,即使在 LPS 这样最复杂的生物分子中,HMR 也是可靠的。对于具有不同质子化状态的系统,PO 或 PO 基团可以采样到相似的构象,但不同的磷酸质子化状态会对 LPS 酰基链的脂质堆积和构象性质产生轻微影响。具有 PO 的系统的每个脂质面积略小,因此与具有 PO 的系统相比,LPS 脂酰链的构象更为有序,这是由于 PO 之间存在更多的静电排斥,即使有中和 Ca 离子也是如此。CHARMM-GUI 中提供的 HMR 和 LPS 磷酸的不同质子化状态有望用于进一步研究具有不同起源的生物系统。