Bioinformatics and Systems Biology, UC San Diego, La Jolla, CA 92093, USA.
Department of Electrical and Computer Engineering, UC San Diego, La Jolla, CA 92093, USA.
Bioinformatics. 2022 Oct 31;38(21):4949-4950. doi: 10.1093/bioinformatics/btac620.
Species tree inference from multi-copy gene trees has long been a challenge in phylogenomics. The recent method ASTRAL-Pro has made strides by enabling multi-copy gene family trees as input and has been quickly adopted. Yet, its scalability, especially memory usage, needs to improve to accommodate the ever-growing dataset size.
We present ASTRAL-Pro 2, an ultrafast and memory efficient version of ASTRAL-Pro that adopts a placement-based optimization algorithm for significantly better scalability without sacrificing accuracy.
The source code and binary files are publicly available at https://github.com/chaoszhang/ASTER; data are available at https://github.com/chaoszhang/A-Pro2_data.
Supplementary data are available at Bioinformatics online.
从多拷贝基因树推断物种树一直是系统基因组学中的一个挑战。最近的方法 ASTRAL-Pro 通过允许多拷贝基因家族树作为输入取得了进展,并已被迅速采用。然而,它的可扩展性,特别是内存使用,需要改进以适应不断增长的数据集大小。
我们提出了 ASTRAL-Pro 2,这是 ASTRAL-Pro 的一个超快速和内存高效版本,它采用了基于放置的优化算法,在不牺牲准确性的情况下显著提高了可扩展性。
源代码和二进制文件可在 https://github.com/chaoszhang/ASTER 上公开获得;数据可在 https://github.com/chaoszhang/A-Pro2_data 上获得。
补充数据可在 Bioinformatics 在线获得。