Department of Robotics and Mechatronics, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan.
Department of Computer Science, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan.
PLoS One. 2022 Sep 12;17(9):e0273649. doi: 10.1371/journal.pone.0273649. eCollection 2022.
This paper presents a new large-scale signer independent dataset for Kazakh-Russian Sign Language (KRSL) for the purposes of Sign Language Processing. We envision it to serve as a new benchmark dataset for performance evaluations of Continuous Sign Language Recognition (CSLR) and Translation (CSLT) tasks. The proposed FluentSigners-50 dataset consists of 173 sentences performed by 50 KRSL signers resulting in 43,250 video samples. Dataset contributors recorded videos in real-life settings on a wide variety of backgrounds using various devices such as smartphones and web cameras. Therefore, distance to the camera, camera angles and aspect ratio, video quality, and frame rates varied for each dataset contributor. Additionally, the proposed dataset contains a high degree of linguistic and inter-signer variability and thus is a better training set for recognizing a real-life sign language. FluentSigners-50 baseline is established using two state-of-the-art methods, Stochastic CSLR and TSPNet. To this end, we carefully prepared three benchmark train-test splits for models' evaluations in terms of: signer independence, age independence, and unseen sentences. FluentSigners-50 is publicly available at https://krslproject.github.io/FluentSigners-50/.
本文提出了一个新的大规模哈萨克-俄罗斯手语(KRSL)签名者独立数据集,旨在进行手语处理。我们希望它成为连续手语识别(CSLR)和翻译(CSLT)任务性能评估的新基准数据集。所提出的 FluentSigners-50 数据集由 50 位 KRSL 手语者表演的 173 个句子组成,产生了 43250 个视频样本。数据集贡献者在各种背景下使用智能手机和网络摄像头等各种设备在真实环境中录制视频。因此,对于每个数据集贡献者,摄像机的距离、摄像机角度和纵横比、视频质量和帧率都有所不同。此外,所提出的数据集包含高度的语言和签名者之间的可变性,因此是识别真实手语的更好训练集。使用两种最先进的方法,随机 CSLR 和 TSPNet,建立了 FluentSigners-50 基线。为此,我们仔细准备了三个基准训练-测试分割,用于评估模型在以下方面的性能:签名者独立性、年龄独立性和未见过的句子。FluentSigners-50 可在 https://krslproject.github.io/FluentSigners-50/ 上获得。