IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Nov;69(11):3165-3178. doi: 10.1109/TUFFC.2022.3205923. Epub 2022 Nov 2.
Algorithmic changes that increase beamforming speed have become increasingly relevant to processing synthetic aperture (SA) ultrasound data. In particular, beamforming SA data in a spatio-temporal frequency domain using the F-k (Stolt) migration have been shown to reduce the beamforming time by up to two orders of magnitude compared with the conventional delay-and-sum (DAS) beamforming, and it has been used in applications where large amounts of raw data make real-time frame rates difficult to attain, such as multistatic SA imaging and plane-wave Doppler imaging with large ensemble lengths. However, beamforming signals in a spatio-temporal Fourier space can require loading large blocks of data at once, making it memory-intensive and less suited for parallel (i.e., multithreaded) processing. As an alternative, we propose beamforming in a range-Doppler (RD) frequency domain using the range-Doppler algorithm (RDA) that has originally been developed for SA radar (SAR) imaging. Through simulation and phantom experiments, we show that RDA achieves similar lateral resolution and contrast compared with DAS and F-k migration. At the same time, higher axial sidelobes in RDA images can be reduced via (temporal) frequency binning. Like the F-k migration, RDA significantly reduces the overall number of computations relative to DAS, and it achieves ten times lower processing time on a single CPU. Because RDA uses only a spatial Fourier transform (FT), it requires two times less memory than the F-k migration to process the simulated multistatic data and can be executed on as many as a thousand parallel threads (compared with eight parallel threads for the F-k migration), making it more suitable for implementation on modern graphics processing units (GPUs). While RDA is not as parallelizable as DAS, it is expected to hold a significant speed advantage on devices with moderate parallel processing capabilities (up to several thousand cores), such as point-of-care and low-cost ultrasound devices.
算法的改变使得波束形成速度变得越来越重要,尤其是在时空频率域中使用 F-k(Stolt)偏移成像对合成孔径(SA)超声数据进行波束形成。与传统的延迟求和(DAS)波束形成相比,这可以将波束形成时间减少两个数量级,并且已经在需要大量原始数据的应用中使用,例如多静态 SA 成像和具有大集合长度的平面波多普勒成像,这些应用很难达到实时帧率。然而,在时空傅里叶空间中的波束形成信号可能需要一次加载大量数据块,这使得它的内存密集度更高,不太适合并行(即多线程)处理。作为替代方案,我们提出了在距离-多普勒(RD)频率域中使用距离-多普勒算法(RDA)进行波束形成,该算法最初是为合成孔径雷达(SAR)成像而开发的。通过仿真和体模实验,我们表明 RDA 与 DAS 和 F-k 偏移成像相比,具有相似的横向分辨率和对比度。同时,通过(时间)频率-bin 处理可以降低 RDA 图像中的轴向旁瓣。与 F-k 偏移成像一样,RDA 与 DAS 相比,大大减少了总的计算量,并且在单个 CPU 上的处理时间降低了十倍。由于 RDA 仅使用空间傅里叶变换(FT),因此与 F-k 偏移成像相比,处理模拟多静态数据所需的内存减少了两倍,可以在多达一千个并行线程(与 F-k 偏移成像的八个并行线程相比)上执行,使其更适合在现代图形处理单元(GPU)上实现。虽然 RDA 的并行性不如 DAS,但它有望在具有中等并行处理能力(多达几千个内核)的设备上具有显著的速度优势,例如即时护理和低成本超声设备。